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Abstract
Various interfaces and programming languages exist for accessing the heterogeneous
computational units in modern computers such as CPUs, graphics cards or dedicated
stream processors. These interfaces are often limited to a certain hardware manufac-
turer, or their platform support in general is limited. Those that are truly multi-platform
depend on special hardware-vendor-specific drivers that are often prone to bugs.
These factors can make it especially difficult to deploy software on a large number of

heterogeneous systems and be able to guarantee reliable results while still using the full
potential of the hardware where possible.
In this thesis, a language with an accompanying compiler is described that is able

to translate a SPMD (single-program-multiple-data) stream program with an OpenCL-
like syntax to several target languages that can then be used with dedicated APIs to
use graphics cards and other dedicated hardware. At the same time it can execute the
code on the CPU using the LLVM compiler and virtual machine framework or generate
C++ code that can be compiled using any existing C++ compiler. A special code
transformation on the original program is done to yield efficiently vectorized code using
SIMD instructions.
With the combination of the different outputs, it is possible to use the full compu-

tational power of each system while still being able to guarantee the reliability across
all platforms and hardware configurations by using the CPU to compute the results in
those cases where consistency or stability problems arise in the other paths. Signifi-
cant performance improvements are expected for the SIMD output when compared to a
traditional scalar compilation.
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1. Introduction
In recent years, since the era of single-core high-GHz processors has ended with the Intel
Pentium 4, the topic of parallel computing has become increasingly important for all
kinds of computation, not only in server and cluster environments. CPUs have been
equipped with vector instructions, the number of processor cores has been increased and
dedicated graphics and stream processor boards have been put on the market. All these
technologies require the use of special APIs or instruction sets to optimally exploit their
performance potential.
The approaches that hardware vendors have taken are numerous. Some use language

extensions to hide parts of the complexity. OpenMP [DM98] is an example for this:
Loop statements can be augmented with hints about the contents, and the compiler will
generate multi-threaded code to execute the loop in parallel on multiple CPU cores –
though without using the processor’s vector instructions.
Compiler intrinsics are another type of language extension, where vector instructions

can be directly used from within the usual programming language without resorting to
assembler code. However, the code in this case is still executed on a single processor
core. Also, with both approaches, the user has to know and decide what exactly is
parallelized or vectorized and how this is done.
Certain compilers (e.g. GCC [GRS]) try to perform auto-vectorization by analyzing

the code and detecting vectorizable statement sequences to automatically generate vec-
tor instructions. In theory, this approach does not require explicit knowledge of the
programmer about vectorization, although this is still often necessary in practice to get
good results. Also, the performance of these results is rarely optimal because the detec-
tion of such sequences can be very complex and most compilers can only detect simple
patterns.
Finally, especially for using the computational units on graphics cards and dedicated

stream processors, there are dedicated run-time compiled languages, where the device
specific binary program code is sent to the device for execution at application run-time.
These languages are usually based on a special program model called stream programs.
A stream program, instead of defining a loop running over several data elements itself,

just defines a function that determines the value of each element of the result data
array. The same program can then be executed in parallel on any number of processors
to compute all data elements of an array. OpenCL [SGS10], GLSL [KBR08] and C for
CUDA [Nvi11] are widely used examples for such languages.
Note that the term “stream” is also used for different, only partially related, concepts.

Most notably, it is used to describe systems that use a serial stream of input and output
messages for user input or, in distributed systems, for message based communication. A
related concept is the data exchange in many areas of programming, where a stream of
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bytes (or words) is sent over facilities such as a file descriptor. The term here, however,
is specific to the program model which is used because of its implicit parallelism. It is
not related to message passing.
Some of the existing stream processing languages have the advantage that they run

cross-platform on hardware of multiple vendors. OpenCL in particular is designed not
only to run on all modern dedicated compute hardware but also on the system’s CPU(s).
However, OpenCL, like the other stream processing languages, is based on a driver

model. The compiler and run-time for an OpenCL implementation change from vendor
to vendor and from driver version to driver version. This leads to a risk of software
defects that can not be directly controlled, as driver bugs can show up or disappear at
any time. This is in contrast to the traditional development model, where the compiler
compiles the code once and then the program runs predictably on any system with the
same CPU architecture1.
Another problem with OpenCL is that there is no pre-shipped driver available for

important platforms, such as Windows or Linux, and for some systems, such as FreeBSD
and other Unix systems, there is no driver available at all. On server environments or
environments where the hardware is known, this is not necessarily a problem, but if the
software is to be shipped to typical non-expert end users with diverse hardware, this can
be a severe problem. In particular, if there is no alternative code path based on C or
another traditional language, some users might not be able to run the program at all.
This thesis describes a stream programming system that is designed to solve all these

issues by compiling the same program for multiple target languages. These languages are
then either compiled dynamically at run-time, or are statically linked to the application.
One of these languages is C++, which provides the code path that can be trusted to
run predictably on all systems. The other languages are then optionally used to harness
the additional computational power of any dedicated compute hardware in the system
– with the aforementioned problems that the corresponding systems have.
As an alternative to the C++ back end, a back end based on a virtual machine exists.

LLVM [LA04] is targeted to make use of its just-in-time compilation capabilities. This
back end allows to compile the program down to machine code at application run-time
and directly execute it on the CPU. Since the same is true for the rest of the back ends,
it is possible to use a set of useful programming patterns such as dynamically generating
and running the program code.
To make optimal use of the system’s CPU, the compiler has to be fed with explicit

vector instructions. The idea here is to use a stream of vector instructions to compute
multiple result data elements (of a single run of the original program) in parallel. Sec-
tion 5 describes the approach that was developed to realize this goal. This approach is
working on a global program level in contrast to auto-vectorization, which attempts to
locally replace statement sequences by a single vector instruction. Finally, the generated
code is run for different partitions of the output data array in separate threads so that
all CPU cores are used.

1Except for rare cases such as the Pentium FDIV flaw (http://en.wikipedia.org/w/index.php?
title=Pentium_FDIV_bug&oldid=442679761)
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The system is intended to form a language ecosystem that provides optimal and scal-
able use of any hardware or software configuration with at least one safe path with
reliable results. At the same time, the program has to be written and maintained only
once as a stream program instead of writing one program for each target. Also, any
additional or future language can be supported as a target language by implementing
additional back ends for the compiler.
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2. Related Work
The field of stream languages and high-performance computing already offers many
different solutions. Some of them target CPU computing, some target the GPU, and
others target cluster computing. But only few solutions exist that are able to fully
use the potential of a modern PC with a multi-core CPU and a fast GPU. The most
notable of these is OpenCL [SGS10]. OpenCL has a similar programming concept to the
system described here. However, it does not provide a standard CPU implementation
and depends on additional drivers to be installed in the system. It therefore does not
fulfill the reliability requirements, which are one of the key points in this thesis.
The following sections describe the available alternatives and compare their features

and properties to the SLURP framework described in this thesis. The comparison shows
that no single solution exists that meets all the requirements we are looking for. Combi-
nations of multiple systems will be able to meet the requirements, but at the high cost
of developing and maintaining the code twice or even more often. Note that no cluster
compute systems are listed here because they pursue different goals. The focus here is
to optimally exploit the parallel computation units available on a single machine. Some
cluster based systems could be added on top to provide network compute support.

2.1. Multi-threading systems
OpenMP [DM98] is a language extension for C/C++ and Fortran that allows loops to
be broken up into multiple chunks which are then processed in separate threads. Special
directives are used to tell the compiler how many loop iterations should be merged into
one chunk and how many threads can be used to parallelize the loop. Listing 2.1 shows
a simple example with an OpenMP annotated for loop. The advantage of this approach
is that legacy applications can be easily enhanced by putting the right declarations in
front of the critical loops. However, it often requires extensive tweaking to get the
best possible results, and such local optimizations are often subject to Amdahl’s Law
[Amd67], which limits the gain that can be achieved by parallelization by the amount of
sequential code in a program. The programmer also has to be careful not to introduce
data race conditions by parallelizing code that has data dependencies between different
loop iterations.
The OpenMP extensions allow to use the multi-core and simultaneous multi-threading

[MBH+02] features of a system. However, the additional computational power of SIMD
operations needs to be exploited by other means. The GPU or other dedicated compu-
tational units in general cannot be used by OpenMP.
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1 void multiplyArray ( size_t array_size , float* array , float mult ip l i e r )
2 {
3 #pragma omp pa ra l l e l for
4 for ( size_t i = 0; i < array_size ; i++ )
5 array [ i ] *= mult ip l i e r ;
6 }

Listing 2.1: A for loop with OpenMP annotations

An alternative solution for writing multi-threaded code is provided by Intel’s Thread-
ing Building Blocks (TBB) [Phe08]. These provide a broader framework to C++ applica-
tions, including basic parallel constructs such as parallel loops and thread-safe containers
and memory allocators. Also, the level of control over how the code is executed is higher.
The design also facilitates doing the multi-threading at higher abstraction levels, often
resulting in more scalable code with a lower proportion of sequential program code.
Again, this is also just a CPU solution for multi-threading. SIMD instructions have to
be employed by other means, and multi-threading requires explicit use.

2.2. Compiler intrinsics
Compiler intrinsic functions are mainly a higher-level alternative to assembler or inline
assembler embedded in C++. They are commonly used to access the SIMD instruction
set of the CPU from within the high-level program. An intrinsic has the form of a
normal function and is translated to a matching machine instruction by the compiler.
There are multiple advantages compared to inline assembler. The compiler is responsible
for performing register allocation and can freely optimize the code because it exactly
knows the effects of the intrinsics. Inline assembler, in contrast, typically completely
disables compiler optimizations in the corresponding code section. Compiler intrinsics
also provide a limited amount of hardware abstraction. For example, the Intel Itanium
architecture has many of the SSE instructions of the x86 architecture available, albeit
with a different encoding. The intrinsics work for both architectures, and the compiler
is responsible for generating the actual machine code.
The disadvantage of using compiler intrinsics directly is that they are still specific to a

certain instruction set extension. Support for SSE, MMX, AVX or other SIMD instruc-
tion sets has to be implemented separately, replicating the equivalent implementation
code. Multi-threading will also have to be added using other means such as OpenMP,
TBB or native threading.

2.3. Performance libraries
A higher-level concept is provided by several performance computation libraries. These
libraries contain implementations of a number of common algorithms that can be used
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to create the final program. Common algorithms are Fourier transforms, encryption
algorithms and vector operations. The implementations are hand tuned for multi-core
and SIMD usage and provide a very high performance level. The drawback here is that
they can only be used in an efficient way if the problem at hand matches one of the
provided algorithms.
The libraries are often provided by a hardware vendor and optimized towards that

vendor’s own processors. Performance will often be acceptable when running on CPUs
of other vendors, but also not optimal. A widely used library of this type with CPU-
only support is Intel’s Integrated Performance Primitives [Tay07]. AMD similarly offers,
among others, the Accelerated Parallel Processing Math Libraries (APPML). Although
these also allow high-performance CPU and GPU computing, they are based on OpenCL
and thus share its disadvantages in reliability.
Microsoft provides a library called MSR Accelerator [TPO06] with support for both

the CPU and the GPU. The library allows to write a computational kernel as C++
code, which is then translated with the help of operator overloading and templates into
an internal representation that can be compiled for execution on the GPU and on the
CPU. This library, however, is not cross-platform. It is also statically compiled together
with the C++ code that surrounds it and has limited expressibility regarding loops and
conditional statements.
Intel offers a similar library, called Array Building Blocks [NSL+11]. The library

focuses on using the SIMD and MIMD capabilities of the CPU and does not offer GPU
support.

2.4. Stream-processing frameworks
Several libraries exist based on a stream programming language as described in Section 1.
These libraries execute the same function (or “kernel”) for each data element of an
output array. This formulation allows for simple exploitation of implicit parallelism.
Furthermore, this stream programming model is very well suited for execution in a
GPU.
Currently, the only system that fulfills all of the functional requirements that are

imposed in this thesis, namely cross-platform support, CPU and GPU support and
good usage of the CPU’s capabilities, is OpenCL [SGS10]. The programming model is a
stream processing model, similar to the one used in this thesis, with a similar language
syntax. A short example kernel is shown in Listing 2.2. The API is available on several
platforms, and all kinds of compute hardware can be used. To handle the different
hardware types, each hardware vendor has to write an OpenCL driver. Each of these
drivers contains the full OpenCL implementation, including a compiler.
The complexity of the drivers is one issue that OpenCL has, and this, in the expe-

rience of the author, leads to a relatively high number of software defects in todays
implementations. Even the CPU drivers cannot be considered as a reliable code path
because they also change from vendor to vendor and may introduce defects in new driver
versions. Also, on certain systems, Microsoft Windows being one of them, OpenCL is

11



1 __kernel void multiplyArray (__global const float * a , const float b , __global float * c )
2 {
3 // the current thread index , roughly the same as the current output
4 // coordinate
5 int index = get_global_id (0) ;
6 c [ index ] = a [ index ] * b ;
7 }

Listing 2.2: Simple OpenCL kernel

not installed by default. The user will need to download the appropriate driver and
install it, both for the CPU and for the graphics card; but not all vendors have OpenCL
implementations available. This makes OpenCL difficult to employ in today’s consumer
market.
Nvidia provides the CUDA [Nvi11] framework, which has been widely used for high-

performance computations in the past. The CUDA framework is available for several
operating systems but supports only recent Nvidia GPUs. With DirectCompute, Mi-
crosoft provides a similar library as part of its DirectX API. However, DirectCompute
is limited to recent Windows operating systems. It also does not support the CPU as a
computation target.
During the work on this thesis, Intel independently released their ISPC (Intel SPMD

Program Compiler) [Int11] project. The compiler aims at making the SIMD capabil-
ities available to the programmer using the implicit parallelism in stream languages.
The ISPC language is a modified C dialect with some additional annotations and type
modifiers. These annotations help the compiler parallelize the code. Interestingly, they
appear to do a similar SIMD transformation to what is described in Section 5. However,
there is no literature available about their approach apart from some comments in the
user manual. The language is similar to the one developed in this thesis, but it requires
the programmer to explicitly specify the loop over the output data elements which is
parallelized. Two built-in variables, programCount and programIndex, are then used
inside the loop to logically access the individual SIMD elements. This means that the
underlying SIMD target is only partially abstracted by the language. The compiler tar-
gets only the SIMD units of the CPU. Multi-threading has to be done explicitly, and
the GPU is not supported as a target.

2.5. Array languages
Another category of languages that complements stream-oriented languages is the class
of array languages. Array languages are functional languages that directly operate on
arrays to make use of the implicit data parallelism of array operations. They allow
for more flexible algorithm specification, because there is no implicit data loop into
which the algorithm has to fit, as is the case for more restricted stream languages. The
programmer specifies the whole algorithm, including how the output is structured and
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how it is computed. In contrast, when using a stream language, the same algorithm may
have to be broken up into multiple computation kernels that are then run sequentially on
intermediate results. This is a reason why it can be difficult to generically translate array
languages for execution on the GPU, especially on restricted stream language models,
as they are used for GLSL and other shader languages.
Array languages, such as APL [Ive62] and SISAL [MSA+83], have been used for a long

time with an implicit approach to parallelization. However, they have only been used
to target CPU and cluster systems, but not the GPU. A more recent development is
Single Assignment C (SAC) [GS06]. The SAC program formulation is purely functional,
although the syntax is largely similar to C. Arrays are treated as value types that can
be returned from functions or passed as parameters. Uniform operations on arrays can
be implicitly parallelized because of the functional nature of the language. Experiments
with a translation from SAC to CUDA was done in [GDORT+11]. However, only recent
Nvidia GPUs support CUDA, which is why it has to be considered platform-specific in
this context. It also does not allow dynamic compilation and does not use the SIMD
units of the CPU for parallel execution, although the language model in general allows
it.

2.6. Comparison
The following table gives an overview over all mentioned stream language systems. It
lists the most important criteria and how they apply to each system. One criterion, the
support for older GPUs, was added due to the fact that older graphics card generations,
although still being quite fast, lack certain features that would make them OpenCL
compatible. These GPUs can therefore only be employed by using a shader language such
as GLSL. In some years this criterion will probably not be a valid differentiator anymore,
however. The first column of the table lists the characteristics of the system described in
this thesis termed SLURP (Stream Language Unified Runtime Programming), followed
by the alternatives.

13



SLURP OpenCL DirectCompute MSR
Accelerator

Cross-platform yes yes no no
Architecture-independent yes yes yes yes
No special driver required yes no yes yes
Supports CPU yes yes no yes
Uses multiple cores yes (yes) no yes
Uses SIMD yes (yes) no (yes)
Supports GPU yes yes yes yes
Supports older GPUs yes no no no
Reliable fall-back path yes no no yes
Frees the programmer from
hardware specifics

yes yes yes yes

Full expressibility yes yes yes no
Supports direct memory ac-
cess

no yes yes (no)

OpenGL Direct3D IPP OpenMP Compiler-
Intrinsics

Cross-platform yes no yes yes yes
Architecture-independent yes yes (yes) yes no
No special driver required (yes) (yes) yes yes yes
Supports CPU no no yes yes yes
Uses multiple cores no no yes yes no
Uses SIMD no no yes no yes
Supports GPU yes yes no no no
Supports older GPUs yes yes no no no
Reliable fall-back path no no yes yes yes
Frees the programmer from
hardware specifics

yes yes yes (yes) no

Full expressibility yes yes no yes yes
Supports direct memory ac-
cess

no no (no) yes yes

Figure 2.1 shows a broader comparison with more systems, but only considering the
four key requirements CPU support, GPU support, platform independence and relia-
bility. Although not all systems are listed, it shows a tendency that many systems
exist that support either CPU or GPU, but few that support both. Those systems that
do support GPU and CPU are either platform specific, possibly unreliable, or do not
support some of the remaining criteria, such as dynamic compilation or high language
expressibility.
No existing system matches all criteria; to achieve this, it is always necessary to

program for at least two of these systems. The multi-target compiler described in this
thesis can fulfill all requirements, except for direct memory access, while removing the
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Figure 2.1.: Comparison of existing single-machine compute systems according to the
key requirements (1[BFH+04])

burden to implement and maintain the algorithms repeatedly. Direct memory access is
in conflict with support for older GPU hardware and has thus not been included. Once
the requirement for direct memory access becomes more important than supporting this
type of GPU, the SLURP language can be extended with a full pointer type or with
built-in functions to access memory freely.
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3. The Language
The core part of the system is the language definition. Defining the supported language
features is critical for being able to optimally parallelize the input program. Also, target
languages such as GLSL may only support certain operations – so the lowest common
denominator is the gauge to which the language needs to comply. For the rest of the
thesis the language is referred to as the Stream Language Unified Runtime Programming
(SLURP) language.
The general syntax of the language has been chosen based on the C family of languages

(For details see [KR78] or [WG107]). Especially the expression syntax, the curly braces
for blocks and the semicolon as the statement delimiter are taken from C. This choice is
based on the fact that almost all popular languages in the stream language category (Cg
[MGAK03], HLSL [PM03], GLSL [KBR08], C for CUDA [Nvi11] and OpenCL [SGS10])
have a similar syntax and users will be instantly familiar with the language.
Some features that are present in all or some of the mentioned languages have been

left out to simplify the implementation and to allow some optimizations that would
have been difficult or impossible otherwise. The three most important features in this
category are global variables, pointers and free access to the destination data buffer.
Due to the lack of these features, the language is conceptually purely functional. No
function can have side effects and the result depends only on the function’s parameters.
However, inside of the function bodies, procedural-style statements and variables can
be used. There is no language support for data pattern matching as found in some
other functional languages, instead, procedural loop and control flow statements are
supported.

1 alias point = float2 ;
2
3 function point subTileCoords ( point pt , float tile_width )
4 {
5 return pt % tile_width ;
6 }
7
8 kernel float4 myKernel (
9 point output_coordinate ,
10 sampler2 input_array
11 )
12 {
13 float2 coord = subTileCoords ( output_coordinate , 100) ;
14 return sample ( input_array , coord ) ;
15 }

Listing 3.1: A simple SLURP program
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A program consists of a list of global declarations, where a global declaration can be
a type definition, a function definition, or a kernel. A kernel is a function marked to be
the main entry point for a filter. Kernel functions also must have the current output
coordinate as their first argument, followed by an optional list of uniform parameters
(see next section) that are later passed from the host application to the kernel. See
Listing 3.1 for an example of a simple program with all three types of declarations. The
complete language grammar is listed in Appendix A.
(For every kernel in a program, the compiler will create a public filter procedure in

the generated code. This procedure is then called by the application to process a set of
input arrays.)
Apart from the compiler-defined types and functions, there is a special file ‘core.scl’,

which is parsed just before the input program. It contains additional functions and types
that are available to the program. All vector and matrix types, as well as functions and
operators dealing with these types, are defined in that file. It also allows to override
functions that would otherwise be generated by the compiler in the SIMD back ends.
The contents of the file can be considered

3.1. Parallelism model

Figure 3.1.: Conceptual data flow in a stream program with one input array and several
input constants

The programming model used for SLURP is the so called stream language model, also
called “single program, multiple-data” (SPMD) [Dar01]. SPMD is a form of “multiple
instruction, multiple data” (MIMD), where many elements are processed in parallel by
a number of independent processors, but, in contrast to general MIMD, using the same
program. Input and output data is handed to the stream program in the form of arrays
or scalar values. For each element of the result array, the program is called with the input
data, as well as the current output coordinate or output index of the currently computed
element. The return value of the program is then stored at the corresponding position
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in the output array. Figure 3.1 shows the general data flow. A notable constraint here
is that the output array is write-only and distinct from the read-only input arrays, so
that there can be no dependencies on earlier output elements.
This dependency restriction allows the same program to be conceptually executed

independently for every data element in the output data array. It thus allows for un-
restricted parallelization because there are no data dependencies or concurrency of any
kind. There can be hidden dependencies such as false sharing [BS93], where the distinct
memory regions lie on the same cache line of the CPU’s cache and thus are subject to
synchronization between different CPU cores. However, these are hardware implemen-
tation details that can be handled by the compiler.
An obvious possibility here is to use multi-threading to compute parts of the result in

parallel. This is a very important step on today’s multi-core processors (and in similar
form for server clusters) and will result in very good scalability because of the memory
friendly nature of the program (lack of data dependencies, single write operation per
data element). However, modern CPUs are not only parallel at the CPU core level but
also have a growing number of parallel computation units in each core. Although the
processor tries to use up as many of those computation units as possible by using means
such as out-of-order execution or simultaneous multi-threading (SMT, also known as
hyper-threading) [MBH+02], to get the maximum performance, it is necessary to use
a special single-instruction-multiple-data (SIMD) instruction set to fully exploit their
possibilities.
The approach that is used here to exploit the performance gain of SIMD instructions

is based on spatial coherence. Many algorithms have similar input for neighboring data
elements, and the code path taken for those elements is either the same or similar in
most cases. The idea is to exploit this fact by computing four or more array data
elements in lock-step (see Figure 5.2). This way it is possible to guarantee full use of
the SIMD computing power, as long as the code paths stay in sync. This is in contrast
to auto-vectorization, which is heavily dependent on the sequence of computations that
is defined by the compiled program (Section 7.1 provides a more detailed comparison of
the two approaches).
Complications arise if the program contains conditional statements or loops where

the execution of neighboring pixels takes different paths. In this case the compiler
generates code that tries to compute the conditional or loop as efficiently as possible
and then continues with the normal code execution in lock-step. Information from the
type system can be used in many cases to keep the code executing in lock-step, even in
the presence of such constructs. This is detailed in in Section 5.

3.2. Types
3.2.1. Primitive types
The type system is based on the three basic types bool, int and float. The semantics
match C++’s types [ISO03], where bool can be either true or false, int is a two’s
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complement integer and float is an IEEE-754 32 bit floating point number. The int
type is always 32 bit wide, in contrast to C/C++. The exact binary representation of
the bool type in the final compilation result can vary from platform to platform. For
example, the SIMD back end will represent bool as a 32 bit wide integer with the two
possible values −1 and 0 for true and false. This way, the bool type can be efficiently
represented as part of an SSE register.
Finally, pointers are supported as an opaque handle inside of the language in the form

of the pointer type. No operations apart from assignment are supported on this type.
This includes the inability to construct a value of type pointer. The reason for having a
pointer type in the language is simply to be able to define the data types that carry the
input and output arrays for the program. Structures containing pointers can be passed
to predefined functions that are implemented directly in C++ or LLVM code, which can
in turn access the corresponding memory.

3.2.2. Aggregate types
Any type can be aggregated into an array of fixed dimensions, or multiple types can be
combined as a structure, resulting in another (complex) type. The semantics are again
compatible with C++. However, in addition to the one-dimensional arrays supported
by C/C++, multi-dimensional arrays of fixed size are also supported. The predefined
matrix types such as float4x4 are defined to alias two-dimensional array types (i.e.
float[4, 4], see the reference in Listing B.1). This feature allows a natural formulation
of matrix types and definition of mathematical operators.
A special kind of complex type is the function type. This type is not syntactically

constructible but is used for internally representing functions in the compiler. A function
type consists of a return type and a list of parameter types.

3.2.3. The Uniform modifier
Any type can be tagged with the uniform modifier. The uniform modifier tells the
compiler that a certain variable will stay the same across all invocations of a kernel
on a single data set. Any attempt to put a non-uniform value into a variable that is
typed as uniform will result in a compile error. The knowledge that a particular value
stays constant for the duration of the computation allows the compiler to perform a
number of important optimizations. The SSE back end makes extensive use of this type
modifier to generate less general but faster code in some situations (for an example, see
Section 5.4 about conditionals that can be simplified). Another possibility, which is not
implemented in the version of the compiler described here, is to move any computations
that only depend on uniform or constant variables outside of the general data loop. The
results are then only computed once and passed precomputed to the kernel for each
computed data element.
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3.3. Statements and Expressions
The organization of the program code in statements and expressions is very similar and
forms a subset of the statements in C. The supported statement types are:
declaration statements, expression statements, compound statements, return state-

ments, if/else statements, do/while/for statements
Declaration statements support only one variable declaration per statement. The

remaining statements behave like their C/C++ counterparts [KR78]. Listing 3.2 shows
an example, where all types of statements are used.
The expression syntax is also similar to C, except for some missing operators such

as the element accessor ‘->’ and the namespace separator ‘::’. The cast operator also
has a cast prefix and the array index operator supports multiple arguments for index-
ing into multi-dimensional arrays. The operators have the same precedence order and
associativity as in C. The supported operators are:
(), =, ||, &&, ==, !=, <=, >=, <, >, +, -, *, /, %, cast(), [], ., !, ++, –

1 function float t e s t ( )
2 {
3 float x ; // declarat ion statement
4 float y = 1 . 0 ; // declarat ion statement
5
6 x = y * 2 . 0 ; // expression statement
7
8 i f ( x > 1.0 ) // i f / e l s e statement
9 { // compound statement
10 do { // do−while statement
11 x = x * 0 . 5 ;
12 } while ( x > 1.5 ) ;
13
14 while ( x < 1.0 ) // while statement
15 x = x + 0 . 1 ;
16
17 for ( uniform int i = 0; i < 10; i++ ) // for statement
18 x = x * 0.5 + y * 0 . 5 ;
19 } else x = 1 . 0 ;
20
21 i f ( y > x ) // i f statement
22 x = y ;
23
24 return x ; // return statement
25 }

Listing 3.2: Example code showing all statement types

3.4. Input array access
Accessing the input data arrays is done using the library function sample. The sample
function takes a sampler parameter and a coordinate and returns the associated array
element of the array corresponding to the sampler. An example kernel that performs a
vertical edge detection on a 2-dimensional image is given in Listing 3.3. The reason for
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having a function instead of using a direct array access is that this abstraction provides
a number of possible behaviors.
The first possibility is to allow fractional coordinates (non-integer coordinates) and

perform automatic interpolation between neighboring array elements. The GPU usu-
ally has a dedicated texture filter unit, which is able to do this interpolation with no
additional cost. Applications for this feature include lookup tables and scaling of images.
Another possible feature is the specification of a border-wrapping mode. In the current

implementation the sample function will return the nearest element of the array if the
coordinates lie outside of the array bounds. In future implementations wrapping modes
such as repeating the array contents periodically could be added.
Finally, the sample function could provide an abstraction for the data type of the

input array. For example a conversion from the input array element data type to a float
based type could be done on-the-fly and thus make the kernel partially independent of
the input data type.

1 kernel float4 verticalEdgeDetect ( float2 coord , uniform sampler input_image )
2 {
3 float4 current_pixel = sample ( input_image , coord ) ;
4 float4 previous_pixel = sample ( input_image , coord − float2 (1 .0 , 0 .0) ) ;
5 return abs ( current_pixel − previous_pixel ) ;
6 }

Listing 3.3: Example kernel with sampler input argument
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4. Compiler Architecture

Figure 4.1.: Data flow through the different compiler stages
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The compiler framework is split up into a dynamic library that contains the actual
compiler functions and a command line tool for invoking the compiler and outputting
the compiled code into a file. The compiler library supports three modes of operation:

• Compiling to a text file – this is supported for the C++ and GLSL back ends.

• Compiling to a string that is returned to the calling application – also supported
for the C++ and GLSL back ends.

• Compiling directly to a virtual machine for immediate execution – this method is
supported for the LLVM back end.

The compiler library is split up into three main components: the front end, an inter-
mediate representation optimizer and the back end. The front end contains the lexer
and parser components and transforms the input text file into a semantically checked
syntax tree. This syntax tree is then optionally processed by the intermediate represen-
tation optimizer. Finally, the back end performs the final transformation into the target
language, which is output as a text file. Figure 4.1 shows the general data flow of the
compiler components with the SIMD/C++ back end chosen in this example.
The size of the code base is comparatively small in relation to the functionality that

the compiler offers. The software design was developed with attention to low redundancy
and several properties of the D language allow for terse code. In particular, the module
system without header files, the auto keyword for automatic type inference, the property
syntax, compile-time reflection, and features such as the foreach loop helped to get
smaller and more readable source code – especially compared to the equivalent C++
code (Section 7.2 discusses the D language further). The following table lists some code
metrics of the compiler library:

Number of files 35
Number of classes 40
Number of free functions 47
Lines of code 6.374
Number of bytes 370.156
Average number of characters per line 58

The next sections will give an overview over the individual components and their
interfaces.

4.1. Lexer
The first stage of the compiler, the lexer, takes the input text file and then outputs a
stream of so-called tokens. These tokens represent the basic atoms used by the parser
to generate the high-level syntax tree. A token can be an identifier, a floating-point
number or one of the predefined character sequences defined in Listing 4.1.
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1 ==, != , <=, >=, <, >,
2 +=, −=, *=, /=, %=, =,
3 &&, | | ,
4 ++, −−,
5 ! , ~ , &, | ,
6 . , ; , ( , ) , [ , ] , { , } ,
7 +, −, * , / , %

Listing 4.1: Special tokens

Identifiers, as in C, start with a letter or an underscore and can contain alphanu-
meric characters and underscores. Numbers can be in any standard floating-point form.
Whitespace in the form of tabs, spaces and newlines is ignored. Also, C/C++-style
comments are recognized and skipped.
The lexing is done by scanning the input string sequentially, ignoring whitespace and

comments, until the beginning of a token is found. The token is then scanned for its end
and a slice (see Section 7.2) of the string representing the token is returned. Since all
strings are slices of the original input string, the memory required for internal identifiers
during compilation will never exceed the size of the input file.
The lexer supports a look-ahead of one token to support the LL(1) grammar of the

language (see Listing A.1 for the full grammar). This means that the token that was
read last, can be put back into the token stream, so that it will be the next token that
is returned.

4.2. Parser
The parser gets a lexer as its input and successively takes the token output, parses it
and outputs a syntax tree. In addition to parsing and checking for correct syntax, all
semantic rules are enforced during the same process.
Because all variable declarations, function definitions and type definitions must be

done upstream in the source code before they can be used (no forward references are
supported), parsing can happen in a single pass over the source code. This in turn allows
for a fast and simple parser.
The implementation of the parser was done in native D code (see Section 7.2). In

contrast to using a parser generator such as YACC [Joh79] or Bison [DS90], this requires
no special adjustments to the build system and allows for a clean and obvious source
code representation. This in turn simplifies debugging and makes handling ambiguous
corner cases (such as the if/else statement, see [Wik11]) more explicit. An actual code
snippet of the expression parsing code is shown in Listing 4.2. All operators, except for
assignment, array indexing and the dot operator, are transformed into function calls, as
seen in the code snippet in Listing 4.2.
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1 // and_expr −> equal_expr [’&&’ and_expr ] ;
2 Expression parseAndExpr ()
3 {
4 auto l e f t = parseEqualExpr () ;
5
6 i f ( m_lexer . peek () != ”&&” ) return l e f t ;
7 m_lexer . scan () ;
8
9 auto r ight = parseAndExpr () ;
10 return createFunctionCall ( ”opAnd” , l e f t , r ight ) ;
11 }
12
13 // equal_expr −> add_expr [( ’==’ | ’!= ’ | ’<’ | ’<=’ | ’>=’ | ’>’) equal_expr ]
14 Expression parseEqualExpr ()
15 {
16 auto le ftExpr = parseAddExpr () ;
17
18
19 s t r ing opname ;
20 switch(m_lexer . peek () . text ){
21 default : return l e f t ;
22 case ”==” : opname = ”opEqual” ; break ;
23 case ”!=” : opname = ”opNotEqual” ; break ;
24 case ”<” : opname = ”opLess” ; break ;
25 case ”<=” : opname = ”opLessEqual” ; break ;
26 case ”>=” : opname = ”opGreaterEqual” ; break ;
27 case ”>” : opname = ”opGreater” ; break ;
28 }
29
30 m_lexer . scan () ;
31
32 auto r ight = parseEqualExpr () ;
33 return createFunctionCall (opname , l e f t , r ight ) ;
34 }
35
36 // add_expr −> mul_expr [( ’+ ’ | ’− ’) add_expr ]
37 Expression parseAddExpr ()
38 {
39 auto l e f t = parseMulExpr () ;
40
41 s t r ing opname ;
42 switch(m_lexer . peek () . text ){
43 default : return l e f t ;
44 case ”~” : opname = ”opConcat” ; break ;
45 case ”+” : opname = ”opAdd” ; break ;
46 case ”−” : opname = ”opSub” ; break ;
47 }
48
49 m_lexer . scan () ;
50
51 auto r ight = parseAddExpr () ;
52 return createFunctionCall (opname , l e f t , r ight ) ;
53 }

Listing 4.2: Code snippet of the parser implementation
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4.3. Intermediate representation

Figure 4.2.: Class diagram of the intermediate program representation

The intermediate representation used for communicating between the front end, the
optimizer and the back end is implemented in the form of a syntax tree. The basic tree
elements are the classes Program, Function, Statement and Expression. All of these
classes derive from a common base class AST . The AST class provides abstract access
to the syntax tree and allows generic traversal and transformations. The Statement
class provides a number of additional abstract methods that are implemented in its
subclasses. These methods allow traversal and modification of all contained expressions
and statements. The optimizer (Section 4.4) and the SIMD code generator (Section 5)
both make extensive use of these. The AST structure can also be used to serialize the
syntax tree to disk. A pre-compiled binary format is an example application that can
be realized with this. See Figure 4.2 for a breakdown of the class hierarchy.
Because the SLURP language is based on C, just as all supported high-level target

languages are based on C (C++ and GLSL), the same syntax tree form can be used
throughout the compiler all the way down to the back end, where it can then be easily
transformed to the target language. Multiple transformations to and from different
intermediate representations become unnecessary. One exception is the transformation
of operators to function calls, which has to be reverted for the target languages.
Transforming operators in each language back end is a necessary step, as different

languages sometimes have different semantics for the same operator. An example is the
multiplication operator when used with matrix types. GLSL defines the operator to
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perform a matrix multiplication, while other languages such as HLSL (Direct 3D) use
element-wise multiplication.

4.4. Optimizer
The optimizer consists of an ordered list of sub-modules that consecutively process the
parsed program. Each sub-module is implemented as a simple function that gets a
program object as its input and modifies this program object in-place. The order and
type of optimizer modules is specified by the high-level application logic and can be
extended by defining additional modules and inserting them into the optimization queue.
The following sections describe the optimizer modules that are already present in

the compiler. For this thesis, only basic optimizers have been implemented. Modern
compilers in general have a plethora of different optimization algorithms ([Muc97] gives
a solid overview). But since all target languages of this compiler are again compiled
using an existing, typically more advanced compiler, the gain of aggressive optimization
at this stage is quite low. An important exception is the SIMD back end, which does
some important optimizations outside of the general optimization queue that are specific
to the back end (see Section 5.3.

4.4.1. Constant folding
The very first optimization that is done to the program is constant folding. During
constant folding, the program is recursively searched for all contained expressions. Ev-
ery expression is then searched for sub-expressions which only have constants as their
arguments. These expressions are then evaluated if possible and replaced by a constant.
This is done until no such replacements are possible any more.
This process works only for expressions which have a compile-time version of their

operation available. Most of the built-in functions have a compile-time implementation.
Additionally, user-defined functions can be evaluated using a small interpreter that is
built into the compiler, as long as they use only data available at compile-time.
Constant folding is an important foundation for other optimizations that can make

assumptions if certain values are constants. Examples are dead code elimination (Sec-
tion 4.4.2) and uniform loop unfusion (Section 5.5).

4.4.2. Dead code elimination
Dead code elimination attempts to remove those parts of the code that can never be
reached. The degree to which these parts can be detected depends on the refinement of
the control flow analysis employed (where perfect detection is impossible due to Turing’s
undecidability theorem).
The method used here tries to catch the most simple cases where a constant expression

of a conditional or loop statement yields either true or false. In this case the conditional
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statement can be replaced by either the true-branch or the false-branch, and loops with
zero iterations can be eliminated.
Note that although this is a very simple detection strategy, it covers most real-world

cases in stream programs and arguably almost all cases that matter. The primary
reason for this optimization is to allow conditional statements together with compile-
time constants to disable certain code paths without overhead.

4.5. Back end

Figure 4.3.: Structure of the compiler back end

The compiler has five switchable back ends for generating its output, a GLSL back
end, two C++ based back ends and two LLVM based back ends. The most basic back
end is the generic C++ back end, which will output C++ source code that is in general
very similar to the input program code. This generic output provides a target that
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1 kernel float t e s t ( float2 pos )
2 {
3 float z = pos [ 0 ] + pos [ 1 ] ;
4 z = z + 0 . 5 ;
5
6 i f ( pos [ 0 ] >= 0.5 ){
7 z = z − 0 . 5 ;
8 }
9
10 return z * 0 . 5 ;
11 }

Listing 4.3: An example kernel function

can be further compiled using any C++ compiler. That way, for every platform with a
C++ compiler there is always a robust kernel compilation available that provides correct
output, assuming that there are no defects in the CPUs functionality.
The GLSL back end derives from the C++ back end and modifies the output by

overriding certain functions and providing a mapping between functions and operators
specific for the target language. Finally, there is a back ends based on LLVM [LA04].
This back ends does not output source code but generate a program representation
in LLVM intermediate code. This code allows the stream program to be executed at
run-time using a virtual machine.
The remaining two back ends combine the C++ or the LLVM back end with a code

transformation for exploiting the SIMD functionality of the CPU. Figure 4.3 shows a
diagram of the full back end structure including the SIMD back ends.
The following sub sections will use the example kernel in Listing 4.3 to illustrate the

output of the respective back ends. The kernel performs a simple computation based
only on the output coordinate of the result array. An if statement shows a simple
example of conditional control flow.

4.5.1. SIMD back ends
The SIMD back ends are meta back ends in the sense that they first transform the scalar
program to a program that uses SIMD operations in the form of operations on arrays
of a small fixed size. This is done by logically computing multiple invocations of the
kernel function in lock-step. The result is then fed into either the C++ or the LLVM
back end, where the array operations are translated to actual SIMD instructions. Some
modifications for the main loop are necessary in these back ends to be able to call the
modified kernel function. In particular, the modified main loop needs to iterate over
tuples of multiple data elements instead of single elements after the transformation.
The actual SIMD instruction set can be configured using a translation table (see next

section). However, at the current stage, only an SSE3 table has been implemented.
Section 5 describes the code transformation process from scalar to vector code, termed
“code fusion” in this thesis.

29



4.5.2. C++ back end
The C++ back end performs a direct translation of the syntax tree that is given as
the input to C++. Since the syntax of SLURP and C++ differs only for function
declarations and type definitions, the largest part of the translation is quite simple.
However, to make use of the arithmetic operators available in C++, the back end needs
to translate back function calls into operators and obey the operator precedence rules
of C++. (All operators are translated to function calls during the parsing process, as
described in Section 4.2).
The result is a string or a text file containing standard C++ code with a function

for each computational kernel. The text can then be fed into a C++ compiler, such as
g++ [GRS] or the Microsoft C++ compiler, to generate the final machine code for any
platform that is to be supported. The compile result for the example in Listing 4.3 is
shown in Listing 4.4. The include file ‘scl_builtins.h’ contains C++ implementations of
those built-in functions that have no implementation in ‘core.scl’ (See Section 3). All
functions except for the main kernel function are defined in the ‘slurp_filter’ name space
to avoid name collisions with external code. PixelWriteCursor is a simple abstraction
to access individual elements of an array. This abstraction can be used to transparently
access contents of an array which is not stored as a continuous block of memory (e.g.
this may not be possible for large arrays).
The function kernel_test_generic is generated by the compiler. It contains the main

loop that loops over the output array and calls the kernel function for each output
element. The return value of the kernel function is then written to the output array.
For the case where the C++ back end is used as part of the C++/SIMD back end (see
Figure 4.3), this function will have the SIMD instruction set architecture as a suffix in
its identifier (e.g. ‘sse3’).
To facilitate code reuse, the back end works using a set of translation tables. These

tables can be filled with target language specific information to allow translation to any
C-like language. This is used in the GLSL back end, which uses the C++ back end with
GLSL specific type and function translations. The maps are in particular:
Operator map The operator map maps functions to operators. An operator is defines

as a symbol, a precedence value and a fixness (prefix, infix or suffix). This table
is used to invert the transformation from operators to functions in the parser. It
is needed because different languages may define some operators differently (e.g.
matrix-matrix multiplication is defined as element-wise for HLSL, a regular matrix
multiplication for GLSL and possibly undefined in C++).

Function map Allows to map functions to functions with the same type signature but
with a different name. This map is used for the GLSL back end to translate some
function names (e.g. the lerp function for linear interpolation is called mix in
GLSL).

Type map The type map translates type names to different type names. Examples are
vector and matrix types that can be different: vec2i in GLSL corresponds to int2
in OpenCL and SLURP.
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1 // generated by SCL − do not modify !
2 #include ” sc l_bu i l t in s . h”
3
4 namespace s l u rp_f i l t e r {
5
6
7 static inline float t e s t (const f l oa t2& pos )
8 {
9 float z = pos [ 0 ] + pos [ 1 ] ;
10 z = z + 5.000000e−01f ;
11 i f ( pos [ 0 ] >= 5.000000e−01f )
12 {
13 z = z − 5.000000e−01f ;
14 }
15 return z * 5.000000e−01f ;
16 }
17
18 } // namespace s l u r p _ f i l t e r
19
20 void kernel_test_generic ( s l u rp_f i l t e r : : PixelWriteCursor dest , s l u rp_f i l t e r : : Recti rect )
21 {
22 using namespace s l u rp_f i l t e r ;
23
24 for ( int y = rect . mins [ 1 ] ; y < rect .maxs [ 1 ] ; y++ ){
25 dest .moveTo(0 , y) ;
26 f l oa t2 pos ;
27 pos [ 1 ] = ( float )y ;
28 for ( int x = rect . mins [ 0 ] ; x < rect .maxs [ 0 ] ; x++ ){
29 pos [ 0 ] = ( float )x ;
30 dest . r ( ) = s lu rp_f i l t e r : : t e s t ( pos ) ;
31 dest . stepRight () ;
32 }
33 }
34 }

Listing 4.4: Example kernel compiled to C++

Constructor map Constructors have a very different syntax in different languages. Es-
pecially the construction of arrays varies: Some languages support array literals
of the form “[1, 2, 3]” (D) or “{1, 2, 3}” (C/C++), others require a C++-like
constructor call: “int3(1, 2, 3)” (GLSL/OpenCL). The constructor map translates
values that have an array type to an expression that has this value as its result.

SIMD field map Inside the SLURP language, a SIMD tuple is defined as a struct with
one field named v. The v field is defined as an array of scalars with the length of
the SIMD with of target instruction set. In contrast, the compiler intrinsics used
in C++ use a union of multiple such arrays for all supported SIMD types (e.g.
4 × float32, 4 × int32, 8 × int16 and 16 × int8). Each of these fields is named
differently. The SIMD field map allows to map the v field to a field name for the
corresponding C++ type.

31



4.5.3. GLSL back end
The GLSL back end is targeting the OpenGL shading language, which will in turn be
compiled at application run-time by an OpenGL driver for the GPU. The compiled
shader is then executed as a fragment shader, generating a texture that contains the
results of the kernel computation. Several other languages such as HLSL as used by
Direct3D or OpenCL exist as possible alternatives for GPU computations. Their syntax
is in general very similar and analogous back ends can be implemented with low effort.
The GLSL back end derives from the C++ back end and overrides those functions

that are responsible for generating type definitions and function headers and fills the
translation tables (as described in Section 4.5.2) with entries matching GLSL. Apart
from some boilerplate code which is necessary to connect the compute kernel to the
GLSL shader entry point, all other code is syntactically identical with C++, so that the
main part of the C++ back end can be reused without further modification.
The example kernel translated to GLSL is shown in Listing 4.5. The boilerplate code

consists of declarations for some global input variables and the main function for the
fragment shader. The main function then simply calls the kernel function and writes
the result to the output variable corresponding to the current pixel in the destination
texture.
Running the kernel consists of the following steps in OpenGL:

1. Create the shader using the output GLSL code

2. Create a texture for each input array and upload the array data

3. Create a texture for the output array

4. Create a framebuffer object and bind the output texture

5. Bind the framebuffer, the shader and the input textures

6. Draw a rectangle covering the full framebuffer

7. Read back the data from the output texture

The recommended approach is to keep the data as a texture as long as possible and
only read it back as necessary. This means steps 2 and 7 only have to be done at times
when the data is needed in system RAM (or needs to be stored on disk). Also, steps 1
and 4 have to be done only once, leaving steps 5, 6 and possibly step 3 to be done for
each execution.

4.5.4. LLVM back end
The last back end is based on the LLVM compiler framework. The syntax tree is trans-
lated into LLVM’s intermediate representation, which is an assembler-like language with
a static-single-assignment (SSA) syntax (see Section 6.2). This intermediate represen-
tation is then compiled by the LLVM library at run-time and can be executed directly.
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1 #vers ion 140
2
3 float t e s t ( in vec2 pos )
4 {
5 float z = pos [ 0 ] + pos [ 1 ] ;
6 z = z + 5.000000e−01;
7 i f ( pos [ 0 ] >= 5.000000e−01 )
8 {
9 z = z − 5.000000e−01;
10 }
11 return z * 5.000000e−01;
12 }
13
14 varying vec2 _position ;
15
16 void main ()
17 {
18 gl_FragColor . r = te s t ( _position ) ;
19 }

Listing 4.5: Example kernel compiled to GLSL

This allows to use the CPU for performing kernel computations without needing another
compiler or modifying the build chain for the project, as is the case for the C++ back
end. The LLVM back end has a dedicated description in Section 6.
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5. SIMD Code Generation
The SIMD back ends generate vectorized code that is aimed at performing each operation
of a kernel in lock-step for four neighboring output data elements. A set of compiler
defined types is used to represent SIMD tuples in a hardware independent way (see
Listing 5.1). Only the word size of these tuples has to match the word size of the
target instruction set. Finally, the generic operations are translated to either compiler
intrinsics1 embedded in C++ code (see Section 7.3), or by using the generic vector
operations offered by LLVM [LA04], depending on which target back end is used.
The main SIMD instruction sets supported by the recent generations of x86 CPUs

are MMX and Streaming SIMD Extensions (SSE). MMX provides simultaneous opera-
tions on either eight 8-bit integers, four 16-bit integers, two 32-bit integers or one 64-bit
integer. Since most mathematical algorithms (e.g. physical simulations, equation sys-
tem solving, image processing) require or are more easily expressed using floating-point
operations, MMX is not sufficient as a target for the SLURP language. SSE on the
other hand allows the computation of four simultaneous 32-bit floating point operations,
which is sufficient precision for many algorithms. Later versions of the SSE instruction
set allow two 64-bit integers to be processed at the same time, among other things.
However, since the emphasis in this project is on speed, it uses only 32-bit floating-point
numbers.
Another SIMD instruction set, which is only available on Intel’s latest CPU architec-

tures, is the Advanced Vector Extensions (AVX) set. This instruction set doubles the
word size compared to SSE and is able to compute eight 32-bit floating-point operations
at once.
Figure 5.1 shows the execution of a kernel on the CPU using a scalar execution model.

For each data element in the output array, the kernel function is executed. After it has
finished, the next element is processed. Figure 5.2 shows the same kernel using SIMD
instructions to execute multiple output elements in lock-step. In this example, four input
elements are processed in parallel and four output elements are stored at once. After
that, the next four elements will be processed. Using this concept, the computation can
in theory be sped up by a factor of four by using all of the CPU’s arithmetic computation
units instead of only one.
Complications arise if the kernel function gets more complex and contains conditional

control flow. The next sections describe the process of transforming a program to the
SIMD form and how these complications are handled.

1http://en.wikipedia.org/wiki/Intrinsic_function
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Figure 5.1.: Scalar execution of a stream program

5.1. Code fusion
The term “code fusion” is used throughout this thesis to describe the process of trans-
forming a linear program into vectorized form, where all data types are replaced by
vectorized versions of the type. Special handling is required for conditional program
flow. The result of the fusion is a program that computes a fixed number output data
elements in parallel, while at the same time retaining the semantics of the original pro-
gram. The fusion process happens on all levels of the syntax tree – types, functions,
statements, expressions and values all have to be transformed.
Fusing a type works by replacing all primitive data elements in a type (bool, int, float)

by their fused SIMD equivalent, which is a compiler defined struct containing an array
of the primitive type with the size of a SIMD word of the target instruction set (see
Listing 5.1). This struct is later replaced by the SIMD type used in C++ (__m128 or
__m256) or by a vector type in the case of the LLVM back end. The fused type is then
added as a type alias suffixed with an “_f”. For an example of some types with their
fused equivalents see Listing 5.2.
The code fusion of a program starts by fusing all functions in the program and adding a

definition of the fused function with an “_f” suffix. The fused function has all parameters
and the return type replaced by the fused equivalents. Then, all statements contained
in the function are fused. If a function with the same signature is already defined, the
existing function is used instead of performing the code fusion. This allows to specify
hand optimized fused versions of certain functions.
For most of the statements, fusion means simply replacing any variable references by

the new fused variables/parameters and fusing any expression or type contained in the
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1 // type d e f i n i t i on s of SIMD tup les for an SIMD archi tecture
2 // with 4 elements per word (e . g . SSE) :
3 alias bool_f = struct { bool [ 4 ] v ; }
4 alias int_f = struct { int [ 4 ] v ; }
5 alias f loat_f = struct { float [ 4 ] v ; }
6
7 // the equiva lent d e f i n i t i o ns for AVX are :
8 alias bool_f = struct { bool [ 8 ] v ; }
9 alias int_f = struct { int [ 8 ] v ; }
10 alias f loat_f = struct { float [ 8 ] v ; }

Listing 5.1: Compiler defined types used to represent SIMD tuples

1 // or ig ina l types
2 alias myvec = float [ 2 ] ;
3 alias mystruct = struct {
4 int [ 4 ] u
5 myvec v ;
6 float w;
7 } ;
8
9 // fused types
10 alias myvec_f = f loat_f [ 2 ] ;
11 alias mystruct_f = struct {
12 int_f [ 4 ] u ;
13 myvec_f v ;
14 f loat_f w;
15 } ;
16
17 // Compiler interna l types :
18 // a l i a s f loat_f = struc t { f l o a t [ 4 ] v ; };
19 // a l i a s int_f = struc t { int [ 4 ] v ; };

Listing 5.2: Type definitions along with their fused equivalents
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Figure 5.2.: Execution of a stream program using SIMD instructions

statement. Special handling is required for conditional statements and loops; these are
covered separately in Sections 5.4 and 5.5.
Expressions are fused by first recursively fusing all sub-expressions until either a func-

tion call expression or an array index expression is reached. For function call expressions
(note that operators are also mapped to functions during the parsing process) the func-
tion that is called is replaced by the fused function. Array accesses require some special
handling because the array indices may differ across the SIMD elements. Section 5.3.1
goes into more detail about this.
After this process has finished, the resulting function will now generate the same

result as the original scalar function, just for multiple values in parallel. The proof for
the semantic equality is simple because of the functional nature of the stream program.
It has not been done here explicitly though because the proof is expected to be quite
long if all cases are handled.
Listing 5.4 shows a simple function without loops and conditional control flow along

with its fused equivalent. Note that the multiplication in the first line of the function
is translated to a call to opMul which in turn results in a call to opMulf in the fused
code. opMulf is then translated to an SIMD instruction in the target back end (e.g. the
C++ back end). Also note how the uniform parameter a is not affected by the fusion
process. Since the compiler knows that a does not change across multiple invocations of
the function, it is sufficient to keep one scalar version of a for all computations that are
done in parallel in the fused code.
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1 // or ig ina l function ( compiler defined ) :
2 function float s in ( float x) ;
3
4 // fused function :
5 function f loat_f sin_f ( f loat_f x)
6 {
7 f loat_f ret ;
8 ret . v [ 0 ] = s in (x . v [ 0 ] ) ;
9 ret . v [ 1 ] = s in (x . v [ 1 ] ) ;
10 ret . v [ 2 ] = s in (x . v [ 2 ] ) ;
11 ret . v [ 3 ] = s in (x . v [ 3 ] ) ;
12 return ret ;
13 }

Listing 5.3: The result of code fusion on a built-in function

5.1.1. Built-in functions
Built-in functions for which there is only a run-time implementation of the scalar function
available but no implementation is known at compile-time have to be treated in a special
way. These functions are transformed to a function that takes SIMD tuples as input and
also outputs the result as an SIMD tuple. However, inside it will invoke the original,
scalar version of the function for each SIMD element separately and sequentially. It
thus preserves the semantics, albeit without introducing any parallelism. However, later
in the process, the target back end can replace the whole function with a single SIMD
instruction in many cases. For example, this is the case for all basic arithmetic operations
such as multiplication or addition.
Conceptually, this operation is equivalent to transforming a hypothetic fused version

of the function back to a scalar version while keeping the types of the parameters and
variables fused (equals code splicing, see Section 5.2). The result is a function that
computes each SIMD component of the result separately in a scalar fashion. Listing 5.3
shows an example of such a function.

5.2. Code splicing
Code splicing is in some sense the reverse operation of code fusion. It is needed in
parts where the parallel program flow of the fused program diverges. In these cases the
individual data elements again have to be computed in a scalar fashion, just as in the
original code. However, since the variables inside a fused program block have a fused
type, the original code cannot be used as is.
Instead, what code splicing does is to take the fused code and transform it so that

only a certain SIMD components is computed. The fused variables will be referenced,
but only one fixed component will be read/written. There will then typically be a loop
inserted around the spliced code to compute components consecutively.
The example in Listing 5.4 shows how this applies to the fused variable x. Inside

if the test_f_spliced function, x first has to be decomposed so that only the SIMD
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1 // or ig ina l function
2 function float3 t e s t ( float3 x , uniform float a)
3 {
4 float3 y = a * x ;
5 y [ 0 ] = −y [ 1 ] ;
6 return exp(y) ;
7 }
8
9 // fused version of t e s t ()
10 function f loat3_f test_f ( f loat3_f x , uniform float a)
11 {
12 f loat3_f y = opMul_f( f loat_f (a) , x) ;
13 y [ 0 ] = −y [ 1 ] ;
14 return exp_f (y) ;
15 }
16
17 // sp l i ced version of test_f () , computing jus t one SIMD component of the r e s u l t .
18 function float3 test_f_spl iced ( f loat3_f x , uniform float a , int simd_idx)
19 {
20 float3 y = a * float3 (x [ 0 ] . v [ simd_idx ] , x [ 1 ] . v [ simd_idx ] , x [ 2 ] . v [ simd_idx ] ) ;
21 y [ 0 ] = −y [ 1 ] ;
22 return exp(y) ;
23 }

Listing 5.4: A simple function along with fused and a spliced versions

component specified by simdidx is accessed. The rest of the code equals the code of the
original, scalar function.

5.3. Optimization
Apart from the optimizations already mentioned in Section 4.4, there are a number of
additional optimizations for the code fusion and code splicing transformations that can
be critical for the performance of programs with specific (but common) patterns.

5.3.1. Constant unfusion for array access and SSE register filling
Array accesses with SIMD tuples used to index the array normally require a gather
operation, where first the data elements are collected for the indices corresponding to
each SIMD element. For complex array element types the data will also have to be
transposed into fused form (e.g. 4 × float4 to 1 × float4_f). Figure 5.3 shows such a
generic index read access. The inverse approach applies to write accesses on an array.
A scatter operation is required here to store the results for each SIMD component.
Gather/scatter operations are not directly supported in the current SIMD instruction
sets which means that the operation has to be broken up into a sequence of scalar
load/store operations. This can impose a considerable performance overhead in the
fused code.
However, if it is known at compile-time that the array indices are the same for all

SIMD components, a single array access can be made by accessing just the index of
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Figure 5.3.: Generic array access from SIMD code usind a component-wise gather
operation

one SIMD element. The result is then replicated among the result SIMD register by
using an efficient operation (e.g. the _mm_set1_ps intrinsic in case of SSE output).
See Figure 5.4
The uniform type attribute guarantees that the value of a variable with the uniform

attribute is the same for all invocations of a kernel. Thus, all array indices that are typed
uniform are subject to this optimization. Since all constant values, such as numeric
literals, are automatically uniform, these are also optimized.

5.3.2. Consecutive sampling detection
Very often, simple filter kernels map their input data elements one-to-one to the corre-
sponding output elements at the same coordinates in the output array. For these filters
the data sampling operation can be optimized by taking n consecutive data elements
from the input array (where n equals the SIMD word size) and performing a matrix
transpose to transform them to the fused form. Figure 5.5 shows such a transposition
for an input array of float4 elements on a machine with SIMD words of size four. The
generic approach would be a gather operation as in Figure 5.3.
This pattern is detected by simply looking at the arguments of every sample call (see

Section 3.4) in a kernel and checking if the coordinate parameter is given exactly as the
current output coordinate. More refined detection could be done by allowing constant
additions and subtractions or passing the output coordinate to other functions that again
pass the value unmodified to the sample function. However, the most common case is
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Figure 5.4.: Simplified array access using replication in case of a uniform array index

to use exactly the same coordinate, so this was chosen as the only pattern for the first
implementation.

5.4. Conditional statements
Conditional statements create a problem for the code fusion process. If the result of
the condition differs across neighboring data elements, the code paths differ, and it
may become impossible to compute the result using the usual SIMD approach (See
Figure 5.6). It now becomes necessary to fall back to scalar code and compute each data
element on its own, depending on the corresponding outcome.
The general approach that is taken is as follows:

1. Compute the condition result for all SIMD components at once (fused code).

2. If the results are all equal, execute the true/false branch as normal fused code.

3. If the results differ, loop over all SIMD components, check the condition result each
component and, depending on the result, execute the spliced code of the true/false
branch corresponding to that SIMD component.

Listing 5.5 shows a small example with the compiled result in Listing 5.6. The result
usually works acceptably fast because most algorithms have a relatively high spatial
coherence (data elements that are near to each other have similar values and hence take
similar code paths). If the generic case using spliced code needs to be executed anyway,
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Figure 5.5.: Simplified array access using a transpose operation in case of consecutive
array indices

the C++ compiler can again use its auto-vectorization capabilities to speed up the code
to the usual performance level of scalar code (except for the gather/scatter overhead
that is introduced by the code splicing).
Another possibility to handle conditional branches is to always execute both the true

and the false branch, record all results, and then select the right value for each SIMD
component using the corresponding condition result. Code hand generated using this
approach is shown in Listing 5.7. The compiler in its current state has no implementation
of this type of conditional translation as it is only efficient if the conditional branches
are short. Also, it requires temporary copies of all mutated state, which can be complex
to implement in an optimal way. However, for short branches, it can actually be more
efficient than the first approach, even if both branches are always computed.
In the future, the compiler could choose between both methods by some criterion, such

as length of the branches. It could also execute the kernel on a test data set once for
each method and choose the faster one. In the case of the LLVM back end it would even
be possible to switch between the methods at run-time by employing a live benchmark
while the kernel is executing on the actual data.
A special case are uniform conditions, that is, the condition uses only uniform or

constant values or variables (as defined in Section 3.2) to compute its result. The
conditional statement can be simplified in this case to compute the condition in a scalar
way and to always use fused code for both branches. This is a small but important
optimization for the cases where certain code-paths are enabled or disabled using a
uniform parameter handed in to the kernel function. Uniform conditions that are also
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1 kernel float4 condit ionalKernel ( float2 coord )
2 {
3 float4 r e su l t ;
4 r e su l t [ 0 ] = 0 . 0 ;
5 r e su l t [ 1 ] = 0 . 0 ;
6 r e su l t [ 2 ] = 0 . 0 ;
7 r e su l t [ 3 ] = 1 . 0 ;
8 i f ( coord [ 0 ] > 100 ){
9 r e su l t [ 0 ] = 1 . 0 ;
10 } else {
11 re su l t [ 1 ] = 2 . 0 ;
12 }
13 return r e su l t ;
14 }

Listing 5.5: Example kernel with a conditional

1 static inline f loat4_f conditionalKernel_f ( vec2_f coord )
2 {
3 f loat4_f r e su l t ;
4 r e su l t [ 0 ] = _mm_set1_ps(0.000000 f ) ;
5 r e su l t [ 1 ] = _mm_set1_ps(0.000000 f ) ;
6 r e su l t [ 2 ] = _mm_set1_ps(0.000000 f ) ;
7 r e su l t [ 3 ] = _mm_set1_ps(1.000000 f ) ;
8 {
9 __m128 __tmp_0 = _mm_cmpgt_ps( coord [ 0 ] , _mm_set1_ps(100.000000 f ) ) ;
10 int __tmp_1 = 0;
11 i f ( al lTrue (__tmp_0) )
12 r e su l t [ 0 ] = _mm_set1_ps(1.000000 f ) ;
13 else i f ( a l lFa l s e (__tmp_0) )
14 r e su l t [ 1 ] = _mm_set1_ps(2.000000 f ) ;
15 else
16 for ( ; __tmp_1 < 4; opInc (__tmp_1) )
17 i f ( __tmp_0.m128_i32 [__tmp_1] )
18 r e su l t [ 0 ] . m128_f32 [__tmp_1] = 1.000000 f ;
19 else
20 r e su l t [ 1 ] . m128_f32 [__tmp_1] = 2.000000 f ;
21 }
22 return r e su l t ;
23 }

Listing 5.6: Example kernel with conditional translated to SIMD/C++
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1 static inline f loat4_f conditionalKernel_f ( vec2_f coord )
2 {
3 f loat4_f r e su l t ;
4 r e su l t [ 0 ] = _mm_set1_ps(0.000000 f ) ;
5 r e su l t [ 1 ] = _mm_set1_ps(0.000000 f ) ;
6 r e su l t [ 2 ] = _mm_set1_ps(0.000000 f ) ;
7 r e su l t [ 3 ] = _mm_set1_ps(1.000000 f ) ;
8 {
9 // copy a l l modified s ta te into __tmp_1
10 f loat4_f __tmp_1;
11 __tmp_1[ 0 ] = re su l t [ 0 ] ;
12 __tmp_1[ 1 ] = re su l t [ 1 ] ;
13 // execute the ’ true ’ branch
14 __tmp_1[ 0 ] = _mm_set1_ps(1.000000 f ) ;
15
16 // copy a l l modified s ta te into __tmp_2
17 f loat4_f __tmp_2;
18 __tmp_2[ 0 ] = re su l t [ 0 ] ;
19 __tmp_2[ 1 ] = re su l t [ 1 ] ;
20 // execute the ’ f a l s e ’ branch
21 __tmp_2[ 1 ] = _mm_set1_ps(2.000000 f ) ;
22
23 // evaluate the condition
24 __m128 __tmp_0 = _mm_cmpgt_ps( coord [ 0 ] , _mm_set1_ps(100.000000 f ) ) ;
25
26 // s e l e c t the components from __tmp_1 and __tmp_2 to store into r e s u l t
27 // note that t h i s a predefined in l ine function using mult ip le
28 // _mm_andnot_si128 i n t r i n s i c s i n t e r na l l y .
29 re su l t [ 0 ] = se lect_f (__tmp_0, __tmp_1[ 0 ] , __tmp_2[ 0 ] ) ;
30 r e su l t [ 1 ] = se lect_f (__tmp_0, __tmp_1[ 1 ] , __tmp_2[ 1 ] ) ;
31 }
32 return r e su l t ;
33 }

Listing 5.7: Example kernel with conditional translated to SIMD/C++ with delayed
selection
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Figure 5.6.: Differing conditional control flow for two data elements

constant are completely replaced by the true or false branch by the dead code elimination
logic at an earlier stage (Section 4.4.2).

5.5. Loop statements
Loops, as a generalization of conditional statements, have the same issue that the ex-
ecution paths of neighboring data elements may diverge because the number of loop
iterations may differ between neighboring data elements. A similar approach to the one
used for conditional statements is used here to handle this case:

1. Initialize a condition mask variable to true for each SIMD component.

2. Compute the loop condition result for all components of the current SIMD group.

3. Perform a logical AND operation of the condition result with the condition mask
and place the result in the condition mask.

4. If the condition mask is all true, execute the loop body as normal fused code.

5. If the condition mask is all false, exit the loop.

6. If the condition mask contains mixed results, loop over all SIMD components where
the condition mask is still true and execute the spliced loop body for each of those
components.
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Note that ‘continue’ and ‘break’ statements are not currently supported, as they
severely complicate the algorithm in the case of nested loops. Also, supporting these
statements requires storing additional state and performing additional tests, which can
impact performance. Support for these statements may be added in a later version along
with a proper code analyzer to conditionally use the simple algorithm for the cases with
no such statements. For the time being, the same effect can be achieved using boolean
variables.
Loops with a uniform condition can be translated to a simple scalar loop with a fused

loop body similar to the translation of uniform conditional statements. Note that it is
a very common case to use loops with a constant number of iterations, so this is a very
important optimization for many algorithms.
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6. The LLVM Back End
The LLVM back end provides an additional CPU target for the SLURP compiler. It uses
the LLVM compiler framework [LA04] to compile the SLURP program to machine code.
It is able to do the full compilation at run-time using the virtual machine provided by
LLVM. Together with the GLSL back end, which also compiles the code at application
run-time, it allows to use the CPU and the GPU using run-time compiled code. This in
turn allows dynamic code generation and fast changing and reloading of modified filter
kernels. When doing filter development, this can be a significant productivity boost.
The C++ back end, however, requires a separate invocation of the C++ compiler and
linker tool chain. The application then has to be relinked and run again, resulting in
long turnaround times and no direct possibility of doing dynamic kernel code generation.
An important property, which is shared with the CPU back end, is that the LLVM

back end can be considered as a reliable target. The machine code output does not
depend on a vendor driver that changes over time and the LLVM library is deployed
together with the SLURP compiler and thus is always available.
The back end is at the same time the only back end that differs significantly from

the C++ back end in that it compiles down to an assembler-like intermediate language
instead of high-level C++ or GLSL code that is very similar to SLURP code.

6.1. The Low Level Virtual Machine
The LLVM (Low Level Virtual Machine) project [LA04] was initially started in 2000 as
a research platform for just-in-time (JIT) compilation techniques at the University of
Illinois. The project has grown since then to a full compiler framework with many front
and back ends available, including a full C++ front end. Two modes of operation are
available. First, by using one of the regular compiler back ends, code can be compiled
down to machine code and linked into object or executable files for native execution.
Second, LLVM supports two different virtual machine implementations. The code can
either be interpreted or – and this was the primary purpose of the project – can be
compiled into machine code on-the-fly and executed natively without having to write
out an executable file. This mode is especially interesting for this thesis, because it
allows for several interesting features.
One advantage of the JIT model is that it is possible to generate machine code for

both types of hardware, the CPU and the GPU, at application run-time. This means
that the compiler can be used as a library instead of a standalone executable and the
kernel functions can be developed and recompiled while the application is running. This
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allows great savings in development time when kernels are being debugged or tuned, and
advanced applications using generated kernel code become possible.
Compiling the code just-in-time also opens up the possibility to perform architecture-

specific optimizations for the target machine. Typical compilers will compile for a certain
architecture (e.g. Intel 80586) and use a certain extended feature set (e.g. SSE) but can
only optimize for a certain type of processor. Since different processors can vary widely
in their performance characteristics (in-order vs. out-of-order execution, pipeline depth,
caches etc.), the processor-specific optimization is always a trade-off between the targeted
CPUs. When using JIT compilation, however, the code can be optimized specifically for
the current CPU to obtain optimal performance.

6.2. SSA representation
LLVM uses an intermediate representation known as static-single-assignment (SSA)
[CFR+89]. This representation models the data flow of the program in a functional
style, where each computation yields a new symbolic constant that can be used in later
computation but can never be modified. This kind of intermediate representation allows
for efficient formulation of many optimization and control flow analysis algorithms, as
the program data flow is readily available as a cycle-free graph.
Special handling is required for places where the control flow diverges by means of

conditional branching. In these cases, to be able to represent alternative values for a
certain variable that is changed differently in each code path, a special kind of node is
defined in the SSA graph, the so-called phi function. A phi function node is a node that
selects a value from a set of inputs depending on the control-flow branch that lead to the
phi node. Specifically, it has exactly one value assigned to it for every possible branch or
jump instruction that jumps to the place where the phi node is defined. Listing 6.1 and
Listing 6.2 show a simple example program along with its SSA representation, including
a phi node.
The main purpose of the LLVM back end of the SLURP compiler is to transform

the syntax tree representation with its procedural variable assignments into SSA form.
However, since LLVM also allows memory load and store operations, the back end does
not have to explicitly insert phi nodes in loops and after conditional statements. Instead,
it emits instructions to store each variable that has been modified in a conditional branch
to memory. The next block will then have to load the value back from memory before
using it. LLVM then has an optimization pass built-in that recognizes the load/store
instructions and converts them into phi nodes if possible. This approach substantially
simplifies the code generator and moves the phi node generation to a stage where it can
be done efficiently because all the necessary information is available. In particular, all
blocks that may lead to a different value for a variable are known only after the code
generator has generated the whole function – defining the phi variable may not even be
possible at the point where it is first used. An example for this case is a loop, where the
value of a variable may be read and changed inside of the loop. The phi node has to be
defined at the beginning of the loop, when the loop body has not yet been generated.
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1 function float t e s t ( float x , float y)
2 {
3 float z = x + y ;
4 z = z + 0 . 5 ;
5
6 i f ( x >= 0.5 ){
7 z = z − 0 . 5 ;
8 }
9
10 return z * 0 . 5 ;
11 }

Listing 6.1: A simple function for SSA decomposition

1 def ine float @test ( float %x , float %y) al ignstack (16) {
2 EntryBlock :
3 %z1 = fadd float %x , %y
4 %z2 = fadd float %z1 , 5.000000e−01
5 %0 = fcmp oge float %x , 5.000000e−01
6 br i1 %0, l abe l %trueBranch , l abe l %t a i l
7
8 trueBranch : ; preds = %EntryBlock
9 %z3 = fsub float %z2 , 5.000000e−01
10 br labe l %t a i l
11
12 t a i l : ; preds = %trueBranch , %EntryBlock
13 %z .0 = phi float [ %z3 , %trueBranch ] , [ %z2 , %EntryBlock ]
14 %1 = fmul float %z .0 , 5.000000e−01
15 ret float %1
16 }

Listing 6.2: The simple function transformed into LLVM SSA
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6.3. Virtual machine interface
Once the program is handed over to LLVM in the form of an SSA immediate representa-
tion, a so-called execution engine is used to execute the code. The execution engine can
either be an interpreter, which is available on all platforms, or a JIT compiler specific to
the current platform. In both cases, a simple API is used to feed the program with the
input data in the form of primitive values or pointers to complex data. In the case of
pointers, the virtual machine works directly on the memory pointed to – which means
that there is no memory isolation and the compiler has to make sure that there are no
potentially invalid memory accesses in the intermediate code if security is an issue.

6.4. SIMD code generation
Vectorized code is handled in a generic way inside of the LLVM intermediate language.
Most operations can work either on scalar data or on vectors of arbitrary but fixed size.
Such operations are then transformed into SIMD instructions when the program is com-
piled down to machine code. The LLVM back end of SLURP supports vectorized code
on two levels. On the first level, all vector data types (e.g. float4) are also translated to
vectors in the LLVM representation. This allows the LLVM back end to generate efficient
SIMD code for the directly compiled program without a need for auto-vectorization.
Secondly, the code fusion transformation that is done in the C++/SIMD back end

(Section 5) can also be applied to the LLVM back end. Just like in the C++ version,
instead of computing one data element at a time, a tuple of pixels will then be computed
in parallel by single SIMD instructions.
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7. Discussion

7.1. The Auto-Vectorization approach compared to
code fusion

The approaches taken for vectorization in almost all compiler implementations for imper-
ative languages are either explicit vectorization using compiler intrinsics [Int06], special
loop statements [DM98], or array operations 1 and similar means. Another main ap-
proach is called auto-vectorization [AK87] where the compiler tries to turn inner loops
into SIMD operations. Auto-vectorization is found in many major compiler implemen-
tations, such as GCC, LLVM, the Microsoft C++ compiler and the Intel compilers.
Early research in the area of automatic parallelization of linear programs was done for
Fortran in 1987 [AK87] to be able to use the vector capabilities of the Cray super com-
puter at that time. Similar approaches are now used to target the MMX, SSE and AVX
instructions of modern x86 CPUs.
Auto-vectorization tries to detect certain patterns in the program that can be replaced

by SIMD instructions. Obvious examples include loops with simple loop bodies. Such
loops can be broken up into chunks of the SIMD word size (e.g. four in the case of SSE)
and then replaced by SIMD instructions. Listing 7.1 shows a simplified example. Even
this example requires considerable work in the optimizer to get to the final vectorized
result. The compiler first has to make sure that the loop body does not have any side
effects, where one iteration influences the execution of later iterations; note that this
can be non-trivial in the presence of data aliasing. Then it has to match the unrolled
loop contents against some known patterns with vectorizable code. Also, the vectorized
result shown in the example code is not even necessarily correct because the __m128
data type has to be memory aligned at a 128-bit boundary. Additional code has to be
added to handle possible misalignments of the input arrays. Alternatively, SSE has load
and store instructions which are slower but are allowed to access non-aligned memory.
A thorough overview of the topic of vectorization can be found in [AK01]. The topic

is complex, and the fact that there are only a few compilers on the market that are able
to do meaningful auto-vectorization gives a hint about this complexity.
The obvious advantage of auto-vectorization is that the program developer does not

need to know anything about vectorization and still may get benefits. In reality, however,
even with the best compilers it is often vital to understand how the compiler detects
vectorizable code and how to express the code in a vectorizable way to obtain optimal

1D array operations: http://d-programming-language.org/arrays.html#array-operations
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1 // The or ig ina l function taking the square root
2 // for every element of an array
3 void sqrtArray ( float* dst , float* src )
4 {
5 for ( int i = 0; i < 64; i++ )
6 dst [ i ] = sqrt ( src [ i ] ) ;
7 }
8
9 // Step one i s to unro l l the loop to mul t ip les
10 // of the SIMD vector s i z e
11 void sqrtArrayUnrolled ( float* dst , float* src )
12 {
13 for ( int i = 0; i < 64; i += 4 ){
14 dst [ i +0] = sqrt ( src [ i +0]) ;
15 dst [ i +1] = sqrt ( src [ i +1]) ;
16 dst [ i +2] = sqrt ( src [ i +2]) ;
17 dst [ i +3] = sqrt ( src [ i +3]) ;
18 }
19 }
20
21 // Final ly , the four unrol led expressions can be replaced
22 // by SIMD instruc t ions . In t h i s case , SSE i n t r i n s i c s
23 // are used .
24 void sqrtArrayVectorized ( float* dst , float* src )
25 {
26 for ( int i = 0; i < 64; i += 4 )
27 *(__m128*)&dst [ i ] = _mm_sqrt_ps(*(__m128*)&src [ i ] ) ;
28 }

Listing 7.1: Code snippet along with a possible auto-vectorization result
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results. Another problem is that a lot of code is not vectorizable at all with such a
simple local transformation.
The approach taken for this thesis is based on the concept of loops with loop bodies

that have no side effects apart from the output that each iteration computes (the stream
data model). The loop is generated by the compiler itself, and the developer only writes
the loop body, which is constrained to return the output data for a given data index
without any side effects. The compiler will also make sure that the input and output
data arrays are properly aligned in memory. These conditions permit the complex code
transformation described in Section 5.1 without aliasing or alignment issues.
The big advantage is that there are no patterns to match in some sequential unrolled

loop code but that every single instruction of the original code can now be conceptually
transformed into an SIMD instruction. This guarantees full usage of the SIMD units
as long as the operations are supported by the SIMD instruction set and as long as no
dynamic conditionals are used.
In case of conditionals or loops where the code has to be spliced and executed sequen-

tially (see Section 5.2), the compiler of the target language (C++) can again use its
auto-vectorization capabilities to optimize this sequential code. So in essence, by using
the stream data computation model, it is possible to provide transformed code that has
a much better starting point regarding performance than the equivalent scalar code.
The target compiler can then optimize this code further.

7.2. Using D for the implementation
The compiler implementing the SLURP language and the compilation concepts of this
thesis is written in the D programming language [Ale11]. The language development was
initially developed by Walter Bright of Digital Mars in 1999 as the “Mars” programming
language and was later renamed to “D”. In 2007, the second version (D2) was started,
with an emphasis on a powerful type system that is strict enough to allow to actually
make static inferences and verifications. The result is that a lot of programming errors
are detected at compile-time instead of later at run-time. Today D2 has a well defined
specification2 and is in its final stages where the feature set is fixed and the development
focus is on bug fixing. Several compiler implementations exist, including the reference
compiler based on the Digital Mars back end, a version based on GCC and one based
on LLVM.
The most important requirement for the implementation language was link compat-

ibility with C and the ability to generate shared libraries (DLLs). D allows this in
addition to limited link compatibility with C++. Together with its other properties,
this made D a very adequate choice as the implementation language.
The main goal of D is to provide a systems language, which means that it is compiled

down to machine code and that it provides all the low-level facilities which are necessary
to access the hardware directly (e.g. for writing drivers or operating system kernels). At

2D language reference: http://d-programming-language.org/lex.html
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the same time it tries to stay close to the C++ syntax in many places but at the same
time improve on C++ by removing a lot of historically grown dead weight that causes
the language and compiler implementations to be overly complex. It also adds several
features that help in terms of programming productivity, compile-time computations
and verifiability.
One notable feature is the support of array slices3. In D, every array can be indexed

using a pair of integers and then yields a view on the corresponding sub-range of the
array. String processing can greatly benefit from this feature, as the memory use and
cost for memory allocations is much lower than for the typical string implementations
in C++. The implementation done for this thesis uses array slices to avoid allocating
any memory for identifiers used in the input programs.
A garbage collector, which is used by default in D, simplifies the code in the compiler

and helps to improve performance by reducing the amount of memory management
during the compilation. Also it avoids memory leaks, which is especially important
when the compiler is used as a library for run-time compilation. Finally, it makes sure
that no dangling pointers exist, which can lead to hard-to-track crashes and and possibly
dangerous misbehaviors. D additionally supports a subset known as SafeD. This subset
allows only operations which are safe memory-wise. In particular, it is not allowed
to use pointers or unsafe casting operations. Together this makes sure that the code
is not vulnerable to typical security attacks using buffer overruns or similar program
misbehavior.
Source code is organized in packages and modules, similar to languages such as Java

and C#. D has no header files as they are used in C/C++. This has productivity
advantages because there is less redundant code to write and at the same time it allows
very fast compilation times. The D compiler processes all source code files at once and
therefore avoids the most important reason for slow compile times of C/C++ code, the
repeated loading and parsing of header files.
The syntax of D is simplified compared to C++ and leads to shorter and better read-

able code. Powerful compile-time meta programming features can be used to shorten
the code further. This is used to build some tables in the compiler, where the signa-
ture of a list of D functions is automatically translated to the corresponding run-time
representation by using compile-time reflection.

7.3. Choosing intrinsics as the SIMD target
The C++/SIMD back end generates C++ code with embedded calls to compiler intrinsic
functions (“intrinsics”) matching the SIMD instructions of the target instruction set.
The obvious alternatives would be to use (inline) assembler or machine code as the
target. However, there are several advantages to using C++ intrinsics instead:

• Additional optimization: The main advantage is that the C++ compiler usu-
ally has a powerful optimizer with machine-specific optimizations that can benefit

3D array slicing: http://d-programming-language.org/arrays.html#slicing
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the end result. The compiler is free to perform instruction reordering and SIMD
register allocation in a way that is advantageous for the target machine with in-
trinsics. Inline assembler forces the compiler to disable optimizations around the
assembler block.

• Implementation complexity: Several low-level compiler routines are not needed
in the back end that would be needed if assembler or machine code were targeted.
Examples are register allocation, loop-to-jump transformations, jump label man-
agement, function calls and stack management. In the case of machine code, the
full instruction set of each CPU architecture would need to be written and main-
tained.

• Platform independence: Since portable ISO C++ code is generated that can
be compiled on any compiler which supports the target SIMD intrinsics, almost
any machine and operating system is implicitly supported.

• Limited architecture independence: SSE and AVX intrinsics have the advan-
tage over assembly code of not being specific to 32-bit or 64-bit x86 architectures.
Also, the IA-64 architecture (Intel Itanium processor) supports SSE intrinsics, but
only supports a subset of the SSE functionality present on x86 CPUs and has a
different instruction encoding. Intrinsics provide a convenient abstraction to avoid
having to account for this in the compiler.

The drawback of this approach is that a second compiler is needed to process the code.
But since this compiler is needed anyway in most cases to compile the host application
that uses the filter kernel, this is not a drawback in practice. The platform independence
that is gained outweighs this disadvantage by far.
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8. Measurements
To obtain a comprehensive understanding of the performance characteristics of the dif-
ferent back ends, a number of different kernels were run. Each kernel stresses a certain
part of the processing framework so that differentiated conclusions can be made. The
data is computed in four chunks, which are either computed sequentially or in parallel
depending on the benchmark configuration.
The test platform is a laptop with an Intel Core i7 dual core CPU with Hyper-threading

(simultaneous multi-threading, SMT) [MBH+02], clocked from 2.67 GHz up to 3.06 GHz
using Turbo Boost, which allows dynamic over-clocking of the CPU when only some cores
are used [CJA+09]. The memory consists of 4 GiB of DDR3 memory in dual-channel
mode. The OpenGL/GLSL back end runs on an NVIDIA GeForce GT 330M. Certain
CPU features, namely Hyper-threading and Turbo Boost, skew the results in favor of
the single-threaded versions. But since these features are becoming mainstream across
the major CPU vendors, the results are still a realistic measurement.
Five output types are generated. The first type is a direct translation of the kernel

to C++ without explicit SIMD instructions and without multi-threading. The second
output is the fused version with explicit SIMD usage but still without multi-threading.
Then, the first two outputs are computed again but using 4 threads to split up the work.
And finally, the kernel is compiled as GLSL.
Each of the CPU outputs is compiled using four different compilers. The C++ output

is processed by the Visual Studio 2010 C++ compiler1, once generating a 32-bit exe-
cutable and once a 64-bit one. GCC 4.5.22 also processes the C++ output and compiles
a 32-bit executable. LLVM 2.9 is targeted by the LLVM back end and will generate
32-bit machine code in memory for direct execution.
The GLSL output is benchmarked in two different modes. The first mode (“strict”)

computes the kernel result sequentially for each of the four input chunks and reads back
each result directly. The second mode will only read back the result of the last chunk set
that was computed. This mode was added to get a more realistic timing for environments
where the result data stays in GPU memory as long as possible, which is recommended
for intermediate results when working on the GPU. The overhead of reading back data
from the GPU is still noticeable in the mode, although the PCIe bus of modern systems
is much better in this regard than the older AGP bus. The loop overhead benchmark
shows how much impact the additional read-back operations in the “strict” version have.
All tests were done four times, and the best result was chosen for each configuration.

The GCC results for the SIMD version are strikingly worse than the rest of the config-

1Command line: cl /O2 /Oi /Ob2 /Ot /arch:SSE2 /fp:fast [input files]
2Command line: g++ -O3 -msse3 -ffast-math [input files]
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urations because GCC does not perform function inlining for this configuration. The
reason for this is unknown.

Figure 8.1.: Benchmark results for the color adjustment kernel

Arithmetic performance The first kernel (color adjustment kernel, see Listing C.1)
performs a relatively complex calculation separately on each data element (nearly 103

arithmetic operations per data element) with some conditional statements and only one
sampling operation of the input data array. This test provides a good measure of how
much can be gained by the code fusion process for a typical computation-heavy kernel
that operates on vectors (in this case RGBA pixels). The results are shown in Figure 8.1.
Both the LLVM back end and the C++ output compiled with Visual Studio have a

performance gain of about 73 % when comparing the fused version against the scalar
version. The theoretical gain of 300 % (a factor of four) is not reached because many
of the operations done in the kernel work on 4-component vectors. The compilers are
able to translate these operations to SIMD instructions and can already gain a lot even
without code fusion. Multi-threading offers a further gain of about 135 % for all back
ends, which is in the usual range for a dual-core CPU with Hyper-threading.
The GLSL versions are faster by a factor of 2 to 5 when compared to the multi-

threaded SIMD version of the LLVM back end. This is approximately the theoretical
ratio between the floating point performance of the GPU and the CPU, which means
that the CPU version is about as efficient in terms of wasting computational resources
as the GPU. (... TODO: why is GCC so fast? ...)
A second kernel was created with similar properties as the color adjustment kernel but

with only scalar operations (see Listing C.2) and almost no conditional operations. This
kernel is close to a best-case for the fused SIMD version. The speed up for the LLVM
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Figure 8.2.: Benchmark results for the scalar computation kernel

back end is about 4.01, which even better than the theoretical gain of SSE. The reason
for this behavior is that the scalar version has an additional loop overhead, because an
inner loop (see Listing C.2, line 18) has to be executed four times as often. The multi-
threaded SIMD version of the LLVM back end is even faster than the GLSL version,
which shows how optimized the GPU is for vector operations and that the CPU can
actually compete against it for scalar compute kernels. Figure 8.2 lists the full results.
The speedup factors for this kernel are very near to the theoretical values based on the
number of CPU threads and SIMD components.

Sampling performance A simple convolution filter is used to measure the cost of
reading data from an input array. The kernel (see Listing C.3) consists of a 10 × 10
Gaussian, meaning 100 input sampling operations per output data element. The number
of arithmetic operations is lower than in the color adjustment kernel. The results are
shown in Figure 8.3.
Some large performance differences are apparent in the different back ends. Both

the LLVM and the 32-bit Visual Studio results have very little gain in the respective
SIMD versions because the number of arithmetic computations is relatively small and the
sampling is more expensive in the SIMD version. The expensiveness of the data sampling
in the SIMD version is caused by the necessity to gather data elements scattered across
the input array. This operation cannot be implemented efficiently with SSE operations.
The scalar 64-bit Visual Studio version is exceptionally slow, slower by a factor of

about 2.5 compared to the corresponding 32-bit version. The reason seems to be that
the optimizer is not working for this code for an unknown reason.
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Figure 8.3.: Benchmark results for the 10× 10 Gaussian blur kernel

Finally, the GLSL version provides a very high gain factor of about 10 to 18 compared
to the multi-threaded SIMD LLVM version. The reason for this high discrepancy is that
heavy use of sampling is a very common pattern in the 3D graphics area. For this reason,
GPUs have the capacity to predict, prefetch and cache these accesses [HG97]. Section 9
lists some possible optimizations for the CPU back ends to make this performance gap
smaller.
Another example of a kernel with a high number of sampling operations is one that

computes one iteration of a Gauss-Jordan elimination algorithm to invert a matrix (see
Listing C.4). The SIMD version is slower in general than the scalar version because of
the overhead that sampling and condition statements have in the SIMD code. Again,
the 64-bit scalar version compiled with Visual Studio is exceptionally slow because the
code does not get fully optimized. Figure 8.4 shows the full results.

Loop overhead For very simple kernels, the overhead caused by computations outside
of the actual kernel code can become important. Such computations are the loop that
iterates over all data elements in the CPU version and kernel calls issued by the OpenGL
driver in the GLSL version, as well as latencies in the driver communication. A short
filter computing a vignetting effect is used to model this scenario. The kernel (see
Listing C.5) performs just 7 multiplications and some subtractions.
The results in Figure 8.5 show that all back ends perform pretty equally. In particular,

the GLSL version is now in the same performance range as the CPU versions. Except
for the 64-bit Visual Studio version, the SIMD results are slightly worse than the scalar
counterparts because of the memory gather/scatter operations needed for sampling and
for writing to the output array (See Section 5.3.1).
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Figure 8.4.: Benchmark results for the Gauss-Jordan equation system solver kernel

Dynamic branching The most important weak spot of the SIMD versions is conditional
control flow. There is a certain computational overhead, and it may be necessary to fall
back to scalar computations (see Section 5.4). Two kernels are used to get an impression
of the impact of conditional statements.
The first kernel (see Listing C.6) blurs an image horizontally but takes only pixels into

account that lie in the same column as the current output pixel. The columns have a
width of 100 pixels. The need for falling back to scalar code occurs at the edges between
two such columns. This, however, means that most of the image can be executed as fused
code, and the important factor is the overhead for detecting if the condition is equally
true for all of the SIMD streams. Figure 8.6 shows that the overhead slightly outweighs
the performance advantage of the fused code. Because of this, the SIMD versions are
about 15 % slower than their scalar counterparts, except for the scalar 64-bit result for
Visual Studio, which is again excessively slow.
The GLSL version is faster by a factor of 5 to 12 compared to the multi-threaded

version which is caused by the faster sampling of the GPU, as with the 10×10 Gaussian
blur kernel.
The second kernel (see Listing C.7) executes a sequence of multiplications and addi-

tions on the output coordinate. The sequence has a length of 100 iterations, and each
iteration contains two nested if-statements. The kernel is built in a way that causes the
condition to be different for most neighboring data elements, forcing a scalar path in
almost all iterations. The result of the kernel is a pseudo-random pattern that is useful
for detecting small differences in the precision of floating-point operations on different
back ends or on different hardware.
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Figure 8.5.: Benchmark results for the vignette effect kernel

As shown in Figure 8.7, the fastest CPU version – the multi-threaded SIMD version
compiled with Visual Studio – is slower than the GLSL versions by a factor of about 3
to 4. This shows that conditional control flow on the GPU has a comparable overhead
to the CPU (or even slightly higher), assuming that the pure floating-point arithmetic
performance of the GPU is about 3 to 5 times faster than the CPU, as the arithmetic
benchmark results indicate.
TODO: why is SIMD-LLVM slower than scalar but not for VS?
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Figure 8.6.: Benchmark results for the horizontal column blur kernel

Figure 8.7.: Benchmark results for the floating point-precision test kernel
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9. Conclusion and Outlook
The compiler developed for this thesis successfully solves the main problems with cur-
rent cross-platform computation languages or APIs. It supports virtually all practically
usable hardware by targeting the existing computation languages such as GLSL, while
still providing a reliable code path by outputting C++ or LLVM code.
An additional SIMD code fusion transformation provides optimized output for systems

with SSE support. While certain operations are such as conditional statements can be
slower, this transformation provides a significant speedup for many practical kernels
when comparing against the non-SIMD version without code fusion. This again saves
the development time usually needed to make a hand-optimized version of each filter
kernel.
The system also allows run-time compilation and thus supports run-time generated

kernels and rapid development by avoiding compile-link cycles. The result is a practical
and scalable stream language implementation for robust support of a wide range of
heterogeneous hardware and software configurations.
While the current implementation of the SLURP compiler provides a working base

for practical use, there are many areas in which the implementation can be extended.
Improvements can be made in the areas of performance, programming convenience,
platform support and expressibility.

Weakening the parallelism model A weaker parallelism model with support for global
variables, aliasing using pointers or array slices, or allowing limited dependencies between
different data elements can enable more flexible algorithm implementations.
Many of the target languages support such features, although with possible perfor-

mance implications. However, the GLSL back end is an example where dependencies
and aliasing are not possible or possible only by exploiting implementation-dependent
behavior. Once the decision is made to support only the more powerful target languages,
support for these features can be added.

Compile-time code interpretation An extension to the dead code elimination opti-
mization is to not only evaluate constant expressions at compile-time but also to run
whole functions through an interpreter if all of their input is constant. This allows for
convenient specification of precomputation algorithms whose results are then used for
the main algorithm. Without this support either the performance will suffer or the
precomputation algorithm has to be written in C++ and the result is the fed into the
kernel function as a uniform parameters, which is quite inconvenient in comparison.
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Computing uniform expressions outside of the data loop Similar to the compile-
time interpretation of constant code, uniform code – code that depends only in uniform
or constant input – can be moved from inside the data loop to a place before the loop.
The results of the computation are then either put into global variables for later access
or passed as additional function parameters to the functions that need these values.

Additional optimizer stages Modern compilers support a multitude of optimizations
[Muc97]. While many stages are already performed by the compiler of the target lan-
guage, there are some targets with compilers that also do not optimize very aggressively.
Examples include some GLSL compilers that are shipped with graphics drivers. Some
of the more important optimizations could be added to the SLURP compiler.

OpenCL back end At the current stage, graphics cards are only supported as com-
putation targets by using OpenGL/GLSL fragment shaders [KBR08]. OpenCL [SGS10]
provides an API specifically for doing general purpose computations. Compared to
OpenGL/GLSL it has a more flexible programming model (see “Weakening the par-
allelism model” at the beginning of this section). OpenCL is on its way to gaining
widespread support across different platforms and becoming a valuable target. Since
the syntax of GLSL and OpenCL is very similar, a simple modification of the GLSL
back end suffices to obtain a functional OpenCL back end.

Full support for control flow statements Some statements such as “break” and “con-
tinue” have been left out of the current implementation because they considerably in-
crease the implementation complexity. Although the language is able to express all
algorithms without these statements, it can often be convenient to have them available.

Detection and optimization of certain data sampling patterns Most of the typical
kernel functions have very regular patterns in the way they access the input arrays.
Probably the most common pattern for image processing is to read the data element
corresponding to the current output coordinate, followed by accessing a series of neigh-
boring input elements (convolution).
Detecting such patterns and implementing an optimized replacement function for the

sample function is expected to lead to a significant speed up. Several multiplications
and additions as well as conditional branches can be avoided in the SIMD version. For
simple kernels this would presumably be the most rewarding optimization in terms of
performance.
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List of Abbreviations
API Application Programming Interface

AST Abstract Syntax Tree

AVX Advanced Vector Extensions

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

JIT Just-In-Time (compilation)

LLVM Low Level Virtual Machine

LL(1) Left to right parsing using Leftmost derivation with 1 lookahead

GCC GNU Compiler Collection

GLSL OpenGL Shading Language

GNU GNU’s Not Unix

GPU Graphics Processing Unit

HLSL High-Level Shading Language

MIMD Multiple Instruction, Multiple Data

MMX Marketing term that looks like an abbreviation

RAM Random Access Memory

SIMD Single Instruction, Multiple Data

SLURP Stream Language Unified Runtime Programming, the programming language
framework described in this thesis

SPMD Single Program Multiple Data

SSA Static Single Assignment

SSE (Intel) Streaming SIMD Extensions

VM Virtual Machine

YACC Yet Another Compiler Compiler
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A. Language Grammar

1 global_decl → typedef | function
2
3 typedef → ’ a l i a s ’ IDENT ’=’ type ’ ; ’
4
5 function → ( ’ kernel ’ | ’ function ’ ) type IDENT
6 param_decl_list compound_stmt
7
8 param_decl_list → ’ ( ’ ( ϵ | param ( ’ , ’ param)* ) ’ ) ’
9
10 param → type IDENT
11
12 stmt → compound_stmt | non_comp_stmt
13
14 compound_stmt → ’{ ’ stmt* ’} ’
15
16 non_comp_stmt → decl_or_expr_stmt | return_stmt
17 | if_stmt | for_stmt | while_stmt
18 | do_stmt
19
20 decl_or_expr_stmt → type IDENT (ϵ | ’=’ expr ) ’ ; ’
21 | expr ’ ; ’
22
23 return_stmt → ’ return ’ expr ’ ; ’
24
25 if_stmt → ’ i f ’ ’ ( ’ expr ’ ) ’ stmt
26 (ϵ | ’ e l se ’ stmt )
27
28 NOTE: i f / e l s e ambiguity i s reso lved by matching the ’ e l se ’
29 with the c l o s e s t ’ i f ’ that has no ’ e l se ’ already
30 matched
31
32 for_stmt → ’ for ’ ’ ( ’ (decl_or_expr_stmt | ’ ; ’ )
33 expr ’ ; ’ expr ’ ) ’ stmt
34
35 while_stmt → ’ while ’ ’ ( ’ expr ’ ) ’ stmt
36
37 do_stmt → ’do ’ stmt ’ while ’ ’ ( ’ expr ’ ) ’ ’ ; ’
38
39 expr → assign_expr
40
41 assign_expr → or_expr (ϵ | ( ’= ’ | ’+=’ | ’−=’
42 | ’*=’ | ’/=’ | ’%=’) assign_expr )
43
44 or_expr → and_expr (ϵ | ’ | | ’ or_expr )
45
46 and_expr → equal_expr (ϵ | ’&&’ and_expr)
47
48 equal_expr → add_expr (ϵ | (’==’ | ’ != ’ | ’<’ | ’<=’
49 | ’>=’ | ’> ’) equal_expr )
50
51 add_expr → mul_expr (ϵ |
52 ( ’+ ’ | ’− ’) add_expr)
53
54 mul_expr → cast_expr (ϵ |
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55 ( ’* ’ | ’/ ’ | ’% ’) mul_expr)
56
57 cast_expr → post_expr | ’ cast ’ ’ ( ’ type ’ ) ’ cast_expr
58
59 post_expr → unary_expr ( ’ . ’ IDENT
60 | ’ [ ’ expr ( ’ , ’ expr )* ’ ] ’
61 | ’ ( ’ (ϵ | expr ( ’ , ’ expr ) *) ’ ) ’ )
62
63 unary_expr → var_expr
64 | ( ’+ ’ | ’− ’ | ’ ! ’ | ’~ ’ | ’++’ | ’−−’) post_expr
65
66 var_expr → IDENT | NUMBER | ’ true ’ | ’ f a l s e ’
67 | IDENT ’ ( ’ (ϵ | expr ( ’ , ’ expr ) *) ’ ) ’
68 | ’ ( ’ expr ’ ) ’
69 | ’ [ ’ (ϵ | expr ( ’ , ’ expr ) *) ’ ] ’
70
71 type → base_type ( ’ [ ’ NUMBER ’ ] ’ ) *
72
73 base_type → type_attributes ( struct_type | IDENT)
74
75 struct_type → ’ struct ’ ’{ ’ ( type IDENT ’ ; ’ ) * ’} ’
76
77 type_attributes → ( ’ uniform ’ ) *

Listing A.1: The language grammar
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B. Built-in Functions and Types

1 // opaque pointer type
2 pointer
3
4 // void type
5 void
6
7 // boolean values
8 bool
9 bool2 : bool [ 2 ]
10 bool3 : bool [ 3 ]
11 bool4 : bool [ 4 ]
12 bool2x2 : bool [ 2 , 2 ]
13 bool3x3 : bool [ 3 , 3 ]
14 bool4x4 : bool [ 4 , 4 ]
15
16 // integer values
17 int
18 int2 : int [ 2 ]
19 int3 : int [ 3 ]
20 int4 : int [ 4 ]
21 int2x2 : int [ 2 , 2 ]
22 int3x3 : int [ 3 , 3 ]
23 int4x4 : int [ 4 , 4 ]
24
25 // f loat ing−point values
26 f l o a t
27 f l oa t2 : f l o a t [ 2 ]
28 f l oa t3 : f l o a t [ 3 ]
29 f l oa t4 : f l o a t [ 4 ]
30 f loat2x2 : f l o a t [ 2 , 2 ]
31 f loat3x3 : f l o a t [ 3 , 3 ]
32 f loat4x4 : f l o a t [ 4 , 4 ]
33
34 // input array access
35 sampler2 : uniform struct

Listing B.1: Built-in types
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1 // common funct ions
2 f l o a t [N] rcp ( f l o a t [N] x) | computes the rec ip roca l of x
3 f l o a t [N] sqrt ( f l o a t [N] x) | computes the square root of x
4 f l o a t [N] r sqr t ( f l o a t [N] x) | computes the 1.0 / sqrt (x)
5 f l o a t [N] exp( f l o a t [N] x) | computes e to the power of x
6 f l o a t [N] log ( f l o a t [N] x) | computes the natural logarithm of

x
7 f l o a t [N] pow( f l o a t [N] x , f l o a t [N] y) | computes x to the power of y
8
9 // trigonometric funct ions
10 f l o a t [N] s in ( f l o a t [N] x) | computes the s ine of x
11 f l o a t [N] cos ( f l o a t [N] x) | computes the cos ine of x
12 f l o a t [N] tan ( f l o a t [N] x) | computes the tangent of x
13 f l o a t [N] as in ( f l o a t [N] x) | computes the inverse s ine of x
14 f l o a t [N] acos ( f l o a t [N] x) | computes the inverse cos ine of x
15 f l o a t [N] atan ( f l o a t [N] x) | computes the inverse tangent of x
16 f l o a t [N] atan2 ( f l o a t [N] x , f l o a t [N] y) | computes the inverse tangent of x

/y , with val id values fo r y==0
17
18 // rounding funct ions
19 f l o a t [N] trunc ( f l o a t [N] x) | rounds x to the next integer

towards zero
20 f l o a t [N] f l o o r ( f l o a t [N] x) | rounds x to the l a rge s t integer

that i s not la rge r than x
21 f l o a t [N] c e i l ( f l o a t [N] x) | rounds x to the smal lest integer

that i s not smaller than x
22 f l o a t [N] round( f l o a t [N] x) | rounds x to the nearest integer
23
24 // misc . funct ions
25 f l o a t [N] l e rp ( f l o a t [N] x , f l o a t [N] a , f l o a t [N] b) | computes a l i n ea r inte rpo lat ion

between a and b
26 f l o a t [N] s e l e c t ( bool [N] cond , f l o a t [N] a , f l o a t [N] b) | returns a i f cond==true and b

otherwise
27 f l o a t [N] s e l e c t ( bool [N] cond , int [N] a , int [N] b) | returns a i f cond==true and b

otherwise
28 f l o a t [N] clamp( f l o a t [N] x , f l o a t [N] a , f l o a t [N] b) | clamps x to the range [ a . . b ]
29 f l o a t [N] step ( f l o a t edge , f l o a t [N] x) | returns 1.0 i f x>edge and 0.0

otherwise
30 f l o a t [N] step ( f l o a t [N] edge , f l o a t [N] x) | returns 1.0 i f x>edge and 0.0

otherwise
31 f l o a t [N] s ign ( f l o a t [N] x) | returns 0.0 i f x==0.0, 1.0 i f x>0

and −1.0 i f x<0
32 f l o a t [N] abs ( f l o a t [N] x) | returns the absolute value of x
33 f l o a t [N] sat ( f l o a t [N] x) | clamps x to the range [ 0 . 0 . .

1 . 0 ]
34
35 // vector funct ions
36 f l o a t dot ( f l o a t [N] x , f l o a t [N] y) | computes the sca la r product of x

and y
37 f l o a t dot ( f l o a t [N] x) | computes the eucl idean norm of x

and y
38 f l oa t3 cross ( f l oa t3 x , f l oa t3 y) | computes the cross product of x

and y
39
40 // sampling
41 f l oa t4 sample ( sampler2 source , f l oa t2 coord ) | returns the array element pf ’

source ’ at the spe c i f i ed coordinate

Listing B.2: Built-in functions
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C. Benchmark Kernels

1 function float rgblum( float3 co l ) { return dot ( col , float3 (0 .33 , 0 .34 , 0 .33) ) ; }
2 function float avg( float3 v) { return dot (v , float3 (1 .0 , 1 .0 , 1 .0) /3.0) ; }
3 function float3 saturate ( float3 v) { return clamp(v , 0 .0 , 1 .0) ; }
4
5 function float my_exp( float x){ return 1.0 + x * (0 .5 + x * (0.1667 + x * (0.0417 + x *

0.0083) ) ) ; }
6 function float3 my_exp( float3 x){ return 1.0 + x * (0 .5 + x * (0.1667 + x * (0.0417 + x *

0.0083) ) ) ; }
7 function float my_ln( float x){ float y = x − 1 . 0 ; return y * (1 .0 + y * (−0.5 + y *

(0.3333 + y * −0.25) ) ) ; }
8 function float3 my_ln( float3 x){ float3 y = x − 1 . 0 ; return y * (1 .0 + y * (−0.5 + y *

(0.3333 + y * −0.25) ) ) ; }
9 function float my_pow( float x , float y){ return my_exp(y * my_ln(x) ) ; }
10 function float3 my_pow( float3 x , float3 y){ return my_exp(y * my_ln(x) ) ; }
11 function float my_sqrt( float x){ float y = x − 1 . 0 ; return 1.0 + y * (0 .5 + y * (−0.125 +

y * (0.0625 + y * −0.0391) ) ) ; }
12 function float3 my_sqrt( float3 x){ float3 y = x − 1 . 0 ; return 1.0 + y * (0 .5 + y *

(−0.125 + y * (0.0625 + y * −0.0391) ) ) ; }
13 function float my_rsqrt ( float x){ return 1.0 / my_sqrt(x) ; }
14 function float3 my_rsqrt ( float3 x){ return 1.0 / my_sqrt(x) ; }
15 function float my_norm( float3 x){ return my_rsqrt ( dot (x , x) ) ; }
16 function float my_atan( float x){ return x*my_rsqrt ( abs (x) ) ; }
17 function float3 my_atan( float3 x){ return x*my_rsqrt ( abs (x) ) ; }
18
19 function float3 adjustBrightness_gamma( float3 fc , float b)
20 {
21 float bexp = my_exp(−2.0 * b) ;
22 float3 f = my_pow( fc * min(1 .0 + b*0.3 , 1 .0) , float3 ( 1 . 0 , 1 . 0 , 1 . 0 ) *bexp) ;
23 float f b l = rgblum( f ) ;
24 return ( f − f b l ) * (1 .0 + 0.5*max(b , 0 .0) ) + fb l ;
25 }
26
27 function float3 adjustContrast_atan ( float3 f , float c )
28 {
29 float cexp = my_exp(3.0* c ) ;
30 float3 fcb = 0.5*my_atan(( f −0.5)*cexp ) / my_atan(0.5*max(cexp , 1 .0) ) + 0 . 5 ;
31 float cs = min( abs ( c ) , 1 .0) ;
32 return l e rp ( cs , f , fcb ) ;
33 }
34
35 function float3 brightnessContrast ( float3 fc , float b , float c , float3 r e f c o l o r i )
36 {
37 float3 f = adjustBrightness_gamma( fc , b) ;
38 f = adjustContrast_atan ( f , c ) ;
39 return f ;
40 }
41
42 function float rgbmax( float3 rgb ){ return max(max( rgb [ 0 ] , rgb [ 1 ] ) , rgb [ 2 ] ) ; }
43
44 function float3 applyTint ( float3 c , float3 tintNormalized )
45 {
46 float3 r = my_pow(c , my_exp(avg (3.0* tintNormalized )−4.0*tintNormalized ) ) ;
47 float s = my_exp(−my_norm( tintNormalized ) ) ;
48 return ( r − avg( r ) ) * lerp ( s , avg( c ) , 1 .0) + avg( r ) ;
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49 }
50
51 kernel float4 colorAdjust ( float2 pos , uniform sampler2 input0 )
52 {
53 // adjustment parameters
54 float globalContrast = 0 . 3 ;
55 float contrast = 0 . 3 ;
56 float brightness = 0 . 3 ;
57 float saturat ion = 0 . 3 ;
58 float3 tintNormalized = float3 (1 .0 , 1 .0 , 1 .0) ;
59
60 float4 cur = sample ( input0 , pos ) ;
61
62 float3 r e su l t = float3 ( cur [ 0 ] , cur [ 1 ] , cur [ 2 ] ) ;
63
64 float minmul = my_exp(−1.0) ;
65 float satmul = my_exp( saturat ion ) ;
66 r e su l t = saturate (( r e su l t − rgblum( re su l t ) ) * ( satmul − minmul) / (1 .0 − minmul) +

rgblum( re su l t ) ) ;
67
68 r e su l t = applyTint ( resu l t , tintNormalized ) ;
69
70 float contr_l = ( globalContrast + contrast ) ;
71 float contr_g = contr_l * s ign ( globalContrast ) ;
72 contr_g = clamp(contr_g , 0 .0 , abs ( globalContrast ) ) * s ign ( globalContrast ) ;
73 contr_l = contr_l − contr_g ;
74
75 float3 contr_l_refcolor = float3 (0 .5 , 0 .5 , 0 .5) ;
76 r e su l t = saturate (( r e su l t − contr_l_refcolor ) * my_exp( contr_l ) + contr_l_refcolor ) ;
77 r e su l t = saturate ( brightnessContrast ( resu l t , brightness , contr_g , float3 (0 .5 , 0 .5 , 0 .5)

) ) ;
78
79 return float4 ( resu l t , 1 .0) ;
80 }

Listing C.1: Color adjustment kernel
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1 kernel float4 scalarArithmeticTest ( float2 pos )
2 {
3 float a = pos [ 0 ] * 0 .0001;
4 float b = pos [ 1 ] * 0 .0001;
5
6 float c = a*a + b*b ;
7 float d = a / c ;
8 float e = b / c ;
9
10 float aa = 0 . 1 ;
11 float ab = 0 . 9 ;
12 float ba = 0 . 9 ;
13 float bb = 0 . 1 ;
14
15 c = 0.2 * c ;
16 float f = 1.0 − c ;
17
18 for ( uniform int i = 0; i < 40; ++i ){
19 float tmp = aa * e − ab * d ;
20 e = ba * e + bb * d ;
21 e = ( e + c ) * f ;
22 d = tmp;
23 }
24
25 return float4 ( e , d , d*e , 1 .0) ;
26 }

Listing C.2: Scalar kernel with an emphasis on arithmetic

1 function float myexp( float x)
2 {
3 float tmp = (25.0−x*x) / 25 .0 ;
4 return tmp * tmp;
5 }
6
7 kernel float4 gauss ( float2 pos , uniform sampler2 input0 )
8 {
9 float4 sum = float4 (0 .0 ) ;
10 float wsum = 0 .0 ;
11
12 for ( uniform int i = −5; i < 5; ++i ){
13 float2 xy = float2 (0 .0 , cast ( float ) i ) ;
14 for ( uniform int j = −5; j < 5; ++j ){
15 xy [ 0 ] = cast ( float ) j ;
16 float w = myexp(−0.1*dot (xy , xy) ) ;
17 wsum = wsum + w;
18 sum = sum + w * sample ( input0 , pos + xy) ;
19 }
20 }
21
22 return sum / wsum;
23 }

Listing C.3: ”10× 10 Gaussian blur approximation kernel
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1 kernel float4 gaussjordan ( float2 pos , uniform sampler2 input0 )
2 {
3 float pivot = 10 .0 ;
4
5 float4 v = sample ( input0 , pos ) / sample ( input0 , float2 ( pivot , pos [ 1 ] ) ) ;
6
7 i f ( abs ( pos [ 1 ] − pivot ) > 0.5 )
8 v = v − sample ( input0 , float2 ( pos [ 0 ] , pivot ) ) / sample ( input0 , float2 ( pivot , pivot ) ) ;
9
10 return v ;
11 }

Listing C.4: Gauss-Jordan elimination step kernel

1 kernel float4 vignette ( float2 pos , uniform sampler2 input0 )
2 {
3 float4 s = sample ( input0 , pos ) ;
4
5 float i r e s = 1.0 / 4096.0 ;
6 float2 posnorm = pos * i r e s ;
7 float mul = 1.0 − posnorm [ 0 ] * (1 .0 − posnorm [ 0 ] ) * posnorm [ 1 ] * (1 .0 − posnorm [ 1 ] ) ;
8 mul = (1 .0 − mul*mul*mul) * 4 . 0 ;
9 s = s * mul ;
10
11 return s ;
12 }

Listing C.5: Vignetting effect kernel

1 function float myexp( float x)
2 {
3 float tmp = (25.0−x*x) / 25 .0 ;
4 return tmp * tmp;
5 }
6
7 kernel float4 columnblur ( float2 pos , uniform sampler2 input0 )
8 {
9 float4 sum = float4 (0 .0 , 0 .0 , 0 .0 , 0 .0) ;
10 float wsum = 0 .0 ;
11
12 float col_start = f l o o r ( pos [ 0 ] / 100.0) * 100.0 − pos [ 0 ] ;
13 float col_end = col_start + 100 .0 ;
14
15 for ( float x = max(−20.0 , col_start ) ; x < min(20 .0 , col_end ) ; x = x + 1.0 ){
16 float w = myexp(−0.0025*x*x) ;
17 wsum = wsum + w;
18 sum = sum + w * sample ( input0 , pos + float2 (x , 0 .0) ) ;
19 }
20
21 return sum / wsum;
22 }

Listing C.6: Column blur kernel

80



1 kernel float4 chaos ( float2 pos , uniform sampler2 input0 )
2 {
3 float c = (pos [ 0 ] * 1024.0 + pos [ 1 ] ) * 0.000001;
4 for ( uniform int i = 0; i < 100; ++i ){
5 c = c − f l o o r ( c ) ;
6 i f ( c < 0.3 )
7 c = 2.0 * c ;
8 else i f ( c < 0.7 )
9 c = ( c − 0 .5) * 4.0 + 0 . 5 ;
10 else
11 c = 1.0 − 2.0 * c ;
12 }
13
14 return float4 ( c , c , c , 1 .0) ;
15 }

Listing C.7: Floating-point precision test kernel

81
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